CERTIFICATE OF ACCREDITATION This is to attest that ### ACCURA CALSERV PTE LTD NO.16, AYER RAJAH CRESCENT, # 04-05 D, TEMPCO TECHNOMINIUM SINGAPORE 139965, SINGAPORE #### **Calibration Laboratory CL-262** has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation. Effective Date February 7, 2024 Expiration Date February 1, 2025 President # SCOPE OF ACCREDITATION International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org ## **ACCURA CALSERV PTE LTD** www.accuracalserv.com Contact Name K. Jai Contact Phone +65-68722920 Email sales@accuracalserv.com Accredited to ISO/IEC 17025:2017 Effective Date February 7, 2024 #### **CALIBRATION AND MEASUREMENT CAPABILITY (CMC)*** | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | UNCERTAINTY ^{1,2}
(±) | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | | | | |---|---|---|--|--|--|--| | Mechanical | | | | | | | | Pressure Instruments –
Differential
(Lab & Site) | 20 Pa to 2500 Pa (<i>d</i>)
2500 Pa to 6000 Pa (<i>d</i>)
6000 Pa to 10000 Pa (<i>d</i>)
10000 Pa to 15000 Pa (<i>d</i>) | 0.5 Pa (d)
1.4 Pa (d)
1.7 Pa (d)
14 Pa (d) | Using Differential Pressure
Calibrator by comparison
method | | | | | Pressure Instruments –
Absolute
(Lab & Site) | 910 mbar to 1050 mbar
<i>(a)</i> | 2.4 mbar <i>(a)</i> | Using Barometer in closed chamber by comparison method | | | | | | 40 mbar to 20 bar <i>(a)</i> | 12 mbar <i>(a)</i> | Using Absolute Pressure
Indicator by comparison
method | | | | | Pressure Instruments –
Pneumatic
(Lab & Site) | 0.2 bar to 35 bar <i>(g)</i> | 0.03 % <i>(g)</i> | Using Pneumatic Deadweight
Tester by direct method | | | | | Pressure Instruments –
Hydraulic
(Lab & Site) | 30 psi to 15000 psi <i>(g)</i>
15000 psi to 40000 psi <i>(g)</i> | 0.03 % <i>(g)</i>
0.05 % <i>(g)</i> | Using Hydraulic Deadweight
Tester by direct method | | | | | Vacuum Instruments
(Lab & Site) | -0.95 bar to -0.03 bar <i>(g)</i> | 0.03 % <i>(g)</i> | Using Pneumatic Deadweight
Tester by direct method | | | | | Torque
Wrenches/Meters/Multipliers
(Lab only) | 100 N·m to 300 N·m
300 N·m to 2000 N·m
2000 N·m to 3000 N·m | 0.96 %
0.71 %
0.59 % | Using Torque Calibrator by comparison method | | | | | Thermal | | | | | | | | RTD/Thermocouple with or
without indicator/controller,
Temp Gauge, Capillary
Thermometer, Temperature
Switch, Data logger with
Sensor (Lab & Site) | -80 °C to 0 °C
0 °C to 200 °C
200 °C to 550 °C | 0.09 °C
0.10 °C
0.45 °C | Using Platinum Resistance
Thermometer by comparison
method. | | | | ^{*} If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply. # **SCOPE OF ACCREDITATION** International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | UNCERTAINTY ^{1,2}
(±) | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | | | |--|---|---|--|--|--| | Humidity Instruments (Fixed Points) (Lab & Site) | 11.3 %RH @ 23 °C
35 %RH @ 23 °C
50 %RH @ 23 °C
60 %RH @ 23 °C
75.3 %RH @ 23 °C | 0.3 %RH
0.4 %RH
0.6 %RH
0.6 %RH
0.7 %RH | Using Humidity Standards by direct method | | | | Humidity Instruments (Lab & Site) | 10 %RH to 75 %RH
@ 15 °C to 40 °C | 0.94 %RH | Using reference humidity sensor and Humidity & Temperature Generator by comparison method. | | | | Non-contact Thermometer/
Pyrometer
(Lab only) | 50 °C to 200 °C
200 °C to 525 °C
525 °C to 900 °C | 2.2 °C
3.9 °C
5.1 °C | Using Infrared Meter and blackbody source by comparison method | | | | Electrical – DC/LF | | | | | | | Temperature Indicating
Instruments (RTD)
(Simulation Method)
(Lab & Site) | -200 °C to -100 °C
-100 °C to 0 °C
0 °C to 50 °C
50 °C to 100 °C
100 °C to 150 °C
150 °C to 200 °C
200 °C to 400 °C
400 °C to 600 °C
600 °C to 850 °C | 0.02 °C
0.03 °C
0.04 °C
0.05 °C
0.06 °C
0.07 °C
0.09 °C
0.13 °C
0.18 °C | Using Precision Decade
Resistance Box by direct
method | | | | | Chemica | ıl/Gas | | | | | pH Instruments
(Lab & Site) | 2.000 pH
4.005 pH
7.000 pH
10.001 pH
12.000 pH | 0.02 pH
0.01 pH
0.01 pH
0.01 pH
0.02 pH | Using Buffer Solutions by Direct method | | | | Conductivity Instruments (Lab & Site) | 10 μS/cm
100 μS/cm
1413 μS/cm
10 mS/cm
100 mS/cm
200 mS/cm | 0.1 µS/cm
2.1 µS/cm
4.6 µS/cm
0.04 mS/cm
0.36 mS/cm
2.0 mS/cm | Using Standard Solutions by Direct method | | | | TDS Instruments
(Lab & Site) | 6.6 ppm
66 ppm
939 ppm
6.65 ppt
66.7 ppt
133.4 ppt | 1.1 %
2.1 %
0.32 %
0.39 %
0.35 %
0.99 % | Using Standard Solutions by
Direct method | | | | Total Suspended Solids
Instruments
(Lab & Site) | 5 mg/L
10 mg/L
20 mg/L
50 mg/L | 0.44 mg/L
0.61 mg/L
1.7 mg/L
3.8 mg/L | Using Standard Solutions by Direct method | | | ## SCOPE OF ACCREDITATION International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | |--|----------------------------|--------------------------------|--| | Turbidity Instruments
(Lab & Site) | 5 NTU
50 NTU
100 NTU | 0.37 NTU
3.7 NTU
7.4 NTU | Using Standard Solutions by Direct method | | Oxidation - Reduction
Potential (ORP) instruments
(Lab and Site) | 200 mV
476 mV | 3.1 mV
4.4 mV | Using Standard Solutions by Direct method | ¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration. ²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated. - (d) = differential pressure - (a) = absolute pressure - (g) = gauge pressure ppm = parts in 10^6 ppt = parts in 10^3 NTU = Nephelometric Turbidity Unit