CERTIFICATE OF ACCREDITATION This is to attest that #### **ALQIMMA INSPECTION ESTABLISHMENT** KINGABDULAZIZ STREET AL MURJAN DIST. JEDDAH 23714, KINGDOM OF SAUDI ARABIA #### **Calibration Laboratory CL-257** has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation. Effective Date June 20, 2023 Expiration Date February 1, 2025 President International Accreditation Service, Inc. 3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. I www.iasonline.org #### **ALQIMMA INSPECTION ESTABLISHMENT** www.al-qimma.com.sa **Contact Name** Noor Ahmed **Contact Phone** +966-583401810 Accredited to ISO/IEC 17025:2017 Effective Date June 20, 2023 #### CALIBRATION AND MEASUREMENT CAPABILITY (CMC)* | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | UNCERTAINTY ^{1,2}
(±) | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | |---|--|--|---| | | Dimer | nsional | | | Vernier Calipers
(Plan/ Dial/ Digital) | Up to 300 mm | 9.0 µm | Using Gauge Blocks as per
Calibration Procedure
Number- LABP-002, based on
DIN 862 and DIN 863 | | Micrometers
(Plan/ Dial/ Digital) | Up to 100 mm
100 mm to 300 mm | 4.5 μm
6.1 μm | Using Gauge Blocks as per
Calibration Procedure
Number- LABP-010, based on
DIN 862 and DIN 863 | | Thickness Gauge | Up to 100 mm | 7.6 µm | Using Gauge Blocks as per
Calibration Procedure
Number- LABP-031, based on
NPL Guide No.40 | | Mold Blocks | Up to 300 mm | 22 µm | Using Digital Caliper as per
Calibration Procedure
Number- LABP-016, based on
NPL Guide No.40 | | Test Sieves | Up to 125 mm | 51 μm | Using Digital Caliper as per
Calibration Procedure
Number-LABP-039, based on
ASTM E11 | | Mechanical | | | | | Weighing Balances | 1 mg to 100 g
100 g to 1 kg
1 kg to 10 kg
10 kg to 24 kg
24 kg to 40 kg
40 kg to 500 kg | 0.22 mg
7.2 mg
65 mg
77 mg
0.63 g
310 g | Using F1 Weights as per
Calibration Procedure
Number-LABP-036, based on
SASO 524 | ^{*} If information in this CMC is presented in non-SI units, the conversion factors stated in NIST Special Publication 811 "Guide for the Use of the International System of Units (SI)" apply. International Accreditation Service, Inc. | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | UNCERTAINTY ^{1,2}
(±) | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | | |---|---|--|--|--| | Safety Relief Valve | 0 bar to 60 bar
60 bar to 100 bar
100 bar to 1000 bar | 0.02 bar
0.12 bar
0.22 bar | Using Reference Pressure
Gages as per Calibration
Procedure Number-LABP-
026,
based on API 526 and API
527 | | | Dial Pressure Gauges/
Pressure Chart Recorder/
Pressure Transmitters/
Digital Pressure Gauge | 0 bar to 10 bar
10 bar to 30 bar
30 bar to 60 bar
60 bar to 1000 bar | 6.7 mbar
8.7 mbar
1.4 mbar
0.65 bar | Using Reference Pressure
Gauges as per Calibration
Procedure Number-LABP-
022, based on BS/EN 837-1 | | | Vacuum Gauges | 0 mm Hg to 750 mm Hg | 4.7 mmHg | Using Reference Pressure
Gauges using comparison
method as per Calibration
Procedure Number-LABP-
034, based on BS/EN 837-1 | | | | Theri | mal | | | | RTD/ Thermocouple
/Temperature Transmitters /
(Dial/Digital) Thermometer | -23 °C to 120 °C
120 °C to 650 °C | 0.19 °C
0.20 °C | Using RTD's, Dry Block, RTD
Thermometer, Multi-Function
Calibrator, as per Calibration
Procedure Number-LABP-
006, LABP-008 and LABP-
025, based on EURAMET
CG-11 and EURAMET CG-08 | | | Incubators / Water Baths /
Autoclaves / Ovens /
Furnace | Ambient to 1500 °C | 0.20 °C | Using RTD's, RTD Thermometer, Multi-Function Calibrator as per Calibration Procedure Number-LABP- 038/ LABP-035/ LABP-001/ LABP-019/ LABP-013. (Single Sensor Method), based on EURAMET CG-11, EURAMET CG-08 and ASTM E145 | | | Freezers/ Refrigerators | -80 °C to 0 °C | 0.19 °C | RTDs, RTD Thermometer,
Multi-Function Calibrator as
per Calibration Procedure
Number-LABP-037, based on
EURAMET CG-11 and
EURAMET CG-08 | | | Electrical – DC/LF | | | | | | DC Voltage – Generate ³ | 0 mV to 300 mV
0.3 V to 3 V
3 V to 30 V
30 V to 300 V
300 V to 1000 V | 3.0 µV
15 µV
0.19 mV
2.4 mV
8.0 mV | Using Multi Product Calibrator
as per Calibration Procedure
Number-LABP-018, based on
EURAMET CG-15 | | International Accreditation Service, Inc. | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | UNCERTAINTY ^{1,2}
(±) | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | |---|--|--|---| | DC Voltage – Measure ⁴ | 0 mV to 100 mV
100 mv to 1 V
1 V to 10 V
10 V to 100 V
100 V to 1000 V | 2.6 µV
0.03 mV
0.31 mV
3.1 mV
0.02 V | Using Precision Multimeter as per Calibration Procedure number-LABP-018, NICT Journal-vol63no1-02-03 | | DC Current – Generate ³ | 0 μA to 300 μA
0 mA to 3 mA
0 mA to 30 mA
0 mA to 300 mA
0 A to 1 A
0 A to 2 A
0 A to 3 A
0 A to 10 A
0 A to 20 A
0 A to 1000 A | 0.01 µA
0.08 µA
0.76 µA
7.5 µA
50 µA
0.11 mA
0.25 mA
0.81 mA
2.4 mA
0.58 A | Using Multi Product Calibrator / Coil (50 Turns) as per Calibration Procedure Number-LABP-018, based on EURAMET CG-15 | | DC Current – Measure ⁴ | 0 μA to 100 μA
100 μA to 500 μA
500 uA to 1 mA
1 mA to 10 mA
10 mA to 100 mA
100 mA to 1 A
1 A to 6 A
6 A to 12 A | 0.01 µA
0.08 µA
0.09 µA
0.78 µA
8.3 µA
0.051 mA
0.84 mA
2.5 mA | Using Precision Multimeter as
per Calibration Procedure
Number-LABP-018, NICT
Journal-vol63no1-02-03 | | DC Resistance – Generate ³ | 0 Ω to 100 Ω
100 Ω to 1 kΩ
1 kΩ to 10 kΩ
10 kΩ to 100 kΩ
100 kΩ to 1 MΩ
1 MΩ to 10 MΩ
10 MΩ to 100 MΩ
100 MΩ to 1 GΩ | 1.6 m Ω
8.0 m Ω
80 m Ω
0.81 Ω
15 Ω
0.29 k Ω
15 k Ω
0.61 M Ω | Using Multi Product Calibrator as per Calibration Procedure Number-LABP- 018, based on EURAMET CG-15 | | DC Resistance – Measure ⁴ | 0 Ω to 100 Ω
100 Ω to 1 kΩ
1 kΩ to 10 kΩ
10 kΩ to 100 kΩ
100 kΩ to 1 MΩ
1 MΩ to 10 MΩ
10 MΩ to 100 MΩ
100 MΩ to 1 GΩ | $\begin{array}{c} \text{1.7 m}\Omega \\ \text{8.1 m}\Omega \\ \text{80 m}\Omega \\ \text{0.83 }\Omega \\ \text{0.16 k}\Omega \\ \text{0.32 k}\Omega \\ \text{15 k}\Omega \\ \text{0.63 M}\Omega \end{array}$ | Using Precision Multimeter as per Calibration Procedure Number-LABP-018, NICT Journal-vol63no1-02-03 | | AC Voltage – Generate ³ | 0 mV to 100 mV
(10 Hz to 500 kHz)
0 V to 1 V
(10 Hz to 500 kHz) | 0.06 mV
0.41 mV | Using Multi Product Calibrator
as per Calibration Procedure
Number-LABP-018, based on
EURAMET CG-15 | | | 0 V to 10 V
(10 Hz to 100 kHz) | 4.1 mV | | International Accreditation Service, Inc. | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | UNCERTAINTY ^{1,2}
(±) | CALIBRATION METHOD OR PROCEDURE, STANDARD EQUIPMENT (OPTIONAL) | |--|--|--|---| | AC Voltage – Generate ³ (continued) | 0 V to 100 V
(45 Hz to 100 kHz) | 20 mV | Using Multi Product Calibrator
as per Calibration Procedure
Number-LABP-018, based on
EURAMET CG-15 | | | 0 V to 1000 V
(45 Hz to 10 kHz) | 0.11 V | | | AC Voltage – Measure ⁴ | 0 mV to 100 mV
(3 Hz to 300 kHz) | 0.21 mV | Using Precision Multimeter as per Calibration Procedure Number-LABP-018, NICT | | | 100 mV to 1 V
(10 Hz to 300 kHz) | 0.31 mV | Journal-vol63no1-02-03 | | | 1 V to 10 V
(10 Hz to 300 kHz) | 3.0 mV | | | | 10 V to 100 V
(10 Hz to 300 kHz) | 0.03 mV | | | | 100 V to 750 V
(10 Hz to 300 kHz) | 0.30 V | | | AC Current – Generate ³ | 30 μA to 100 μA
(10 Hz to 30 kHz) | 0.05 μΑ | Using Multi Product Calibrator / (50 T coil) as per Calibration Procedure Number-LABP-018, based on EURAMET CG-15 | | | 0 mA to 1 mA
(10 Hz to 30 kHz) | 0.41 μΑ | | | | 0 mA to 100 mA
(10 Hz to 30 kHz) | 0.03 mA | | | | 0 A to 1 A
(10 Hz to 10 kHz) | 0.31 mA | | | | 0 A to 2 A
(10 Hz to 10 kHz) | 0.61 mA | | | | 0 A to 10 A
(45 Hz to 5 kHz) | 4.2 mA | | | | 0 A to 20 A
(45 Hz to 5 kHz) | 0.01 A | | | | 0 A to 1000 A
(@ 60 Hz) | 0.59 A | | | AC Current – Measure ⁴
at 3 Hz to 10 kHz | 3 μA to 100 μA
1 μA to 1 mA
1 mA to 10 mA
10 mA to 100 mA
100 mA to 500 mA | 0.06 μA
0.47 μA
8.0 μA
0.08 mA
0.31 mA | Using Precision Multimeter as per calibration Procedure Number-LABP-018, NICT Journal-vol63no1-02-03 | International Accreditation Service, Inc. | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | UNCERTAINTY ^{1,2}
(±) | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | |---|--|---------------------------------------|---| | AC Current – Measure ⁴
at 3 Hz to 10 kHz
(continued) | 500 mA to 1 A
1 A to 6 A
6 A to 12 A | 0.62 mA
4.8 mA
0.01 A | Using Precision Multimeter as per calibration Procedure Number-LABP-018, NICT Journal-vol63no1-02-03 | | Electrical Simulation of
Thermocouples –
Generate ³ and Measure ⁴ | | | Using Multi Product
Calibrator (with TC
measuring option) as per
calibration Procedure
Number-LABP-018, based
on EURAMET CG-11 | | Туре В | 0 °C to 1750 °C | Generate: 0.12 °C
Measure: 0.18 °C | | | Type C | 0 °C to 2050 °C | Generate: 0.12 °C
Measure: 0.18 °C | | | Type E | -250 °C to 1000 °C | Generate: 0.09 °C
Measure: 0.18 °C | | | Type J | -210 °C to 1200 °C | Generate: 0.12 °C
Measure: 0.18 °C | | | Type K | -250 °C to 1370 °C | Generate: 0.12 °C
Measure: 0.18 °C | | | Type N | -250 °C to 1250 °C | Generate: 0.12 °C
Measure: 0.18 °C | | | Type S | 0 °C to 1600 °C | Generate: 0.12 °C
Measure: 0.18 °C | | | Туре Т | -250 °C to 400 °C | Generate: 0.09 °C
Measure: 0.18 °C | | | Capacitance – Generate ^{3,5} | 0 pF to 225.0 pF
(0 Hz to 5 kHz) | 0.6 pF | Using Multi Product
Calibrator as per Calibration
Procedure Number-LABP-
018, based on EURAMET
CG-15 | | | 0 pF to 300.0 pF
(0 Hz to 1 kHz) | 0.63 pF | | | | 0 pF to 1 nF
(0 Hz to 1 kHz) | 0.81 pF | | | | 0 pF to 10 nF
(0 Hz to 1 kHz) | 5.0 pF | | | | 0 pF to 30 nF
(0 Hz to 1 kHz) | 15 pF | | | | | | | International Accreditation Service, Inc. | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | RANGE | UNCERTAINTY ^{1,2}
(±) | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | | |---|---|--|--|--| | Capacitance – Generate ^{3,5} continued | 0 pF to 100 nF
(0 Hz to 1 kHz) | 0.05 nF | Using Multi Product Calibrator as per Calibration Procedure Number-LABP- 018, based on EURAMET CG-15 | | | | 0 pF to 300 nF
(0 Hz to 1 kHz) | 0.12 nF | | | | | 0 μF to 3 μF
(0 Hz to 100 Hz) | 1.5 nF | | | | | 0 μF to 10 μF
(0 Hz to 100 Hz) | 6.0 nF | | | | | 0 μF to 30 μF
(0 Hz to 100 Hz) | 0.03 μF | | | | | 0 μF to 100 μF
(0 Hz to 50 Hz) | 0.15 μF | | | | | 0 μF to 300 μF
(0 Hz to 50 Hz) | 0.37 μF | | | | | 0 mF to 3 mF
(0 Hz to 6 Hz) | 3.6 µF | | | | | 0 mF to 30 mF
(0 Hz to 0.6 Hz) | 0.05 mF | | | | | 0 mF to 100 mF
(0 Hz to 0.2 Hz) | 0.12 mF | | | | Capacitance – Measure ⁴ | 0.5 nF to 1 nF
1 nF to 10 nF
10 nF to 100 nF
100 nF to 1 μF
1 μF to 10 μF | 0.82 pF
0.51 nF
4.3 pF
0.42 nF
0.62 nF | Using Precision Multimeter as
per Calibration Procedure
Number-LABP-018, NICT
Journal-vol63no1-02-03 | | | Chemical/Gas | | | | | | pH Meters
(Fixed Values) | 4 pH
7 pH
10 pH | 0.06 pH
0.06 pH
0.06 pH | Using Certified Reference
Buffer Solutions as per
Calibration Procedure
Number-LABP-020, based on
EQ-01-08 and ASTM D 1293 | | | Conductivity Meter
(Fixed Values) | 100 μS/cm
1417 μS/cm
3900 μS/cm | 1.4 %
1.4 %
1.4 % | Using Certified Reference
Solutions as per Calibration
Procedure Number-LABP-
004, based on ASTM D
1125 | | | Multi Gas Detectors | CH ₄ : 50 %LEL,
O ₂ : 20.9 %, | 2.1 % | Using Certified Standard
Span Calibration Gases as | | International Accreditation Service, Inc. | MEASURED
QUANTITY or DEVICE
TYPE CALIBRATED | | (±) | CALIBRATION METHOD OR
PROCEDURE, STANDARD
EQUIPMENT (OPTIONAL) | |---|---|-----|---| | | H ₂ S: 25 ppm
CO: 100 ppm | | per Calibration Procedure
Number- LABP-017, based on
BS EN 60079-29-2 | ¹The uncertainty covered by the Calibration and Measurement Capability (CMC) is expressed as the expanded uncertainty having a coverage probability of approximately 95 %. It is the smallest measurement uncertainty that a laboratory can achieve within its scope of accreditation when performing calibrations of a best existing device. The measurement uncertainty reported on a calibration certificate may be greater than that provided in the CMC due to the behavior of the calibration item and other factors that may contribute to the uncertainty of a specific calibration. ²When uncertainty is stated in relative terms (such as percent, a multiplier expressed as a decimal fraction or in scientific notation), it is in relation to instrument reading or instrument output, as appropriate, unless otherwise indicated. ³Capability is suitable for the calibration of measuring devices in the stated ranges. ⁴Capability is suitable for the calibration of devices intended to generate the indicated quantity in the stated ranges. ⁵Stated uncertainties are valid for the ranges of frequencies given, but the actual frequency applied by the calibrator may be dependent on the measurement device under calibration.