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Foreword

In 1997 a Joint Committee for Guides in Metrology (JCGM), chaired by the Director of the Bureau International des
Poids et Mesures (BIPM), was created by the seven international organizations that had originally in 1993 prepared
the Guide to the expression of uncertainty in measurement (GUM) and the International vocabulary of basic and
general terms in metrology (VIM). The JCGM assumed responsibility for these two documents from the ISO Technical
Advisory Group 4 (TAG4).

The Joint Committee is formed by the BIPM with the International Electrotechnical Commission (IEC), the In-
ternational Federation of Clinical Chemistry and Laboratory Medicine (IFCC), the International Organization for
Standardization (ISO), the International Union of Pure and Applied Chemistry (IUPAC), the International Union
of Pure and Applied Physics (IUPAP), and the International Organization of Legal Metrology (OIML). A fur-
ther organization joined these seven international organizations, namely, the International Laboratory Accreditation
Cooperation (ILAC).

JCGM has two Working Groups. Working Group 1, “Expression of uncertainty in measurement”, has the task to
promote the use of the GUM and to prepare Supplements and other documents for its broad application. Working
Group 2, “Working Group on International vocabulary of basic and general terms in metrology (VIM)”, has the task
to revise and promote the use of the VIM. For further information on the activity of the JCGM, see www.bipm.org

Documents such as this one are intended to give added value to the GUM by providing guidance on aspects of the
evaluation and use of measurement uncertainty that are not explicitly treated in the GUM. Such guidance will be as
consistent as possible with the general probabilistic basis of the GUM.

This document has been prepared by Working Group 1 of the JCGM, and has benefited from detailed reviews
undertaken by member organizations of the JCGM and National Metrology Institutes.
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Introduction

Conformity assessment (see 3.3.1), as broadly defined, is any activity undertaken to determine, directly or indirectly,
whether a product, process, system, person or body meets relevant standards and fulfills specified requirements (see
3.3.3). ISO/IEC 17000:2004 gives general terms and definitions relating to conformity assessment, including the
accreditation of conformity assessment bodies and the use of conformity assessment in facilitating trade.

In a particular kind of conformity assessment, sometimes called inspection (see 3.3.2), the determination that a product
fulfils a specified requirement relies on measurement as a principal source of information. ISO 10576-1:2003 [22] sets
out guidelines for checking conformity with specified limits in the case where a quantity (see 3.2.1) is measured and a
resulting coverage interval (see 3.2.7) (termed ‘uncertainty interval’ in ISO 10576-1:2003) is compared with a tolerance
interval (see 3.3.5). The present document extends this approach to include explicit consideration of risks, and develops
general procedures for deciding conformity based on measurement results (see 3.2.5), recognizing the central role of
probability distributions (see 3.1.1) as expressions of uncertainty and incomplete information.

The evaluation of measurement uncertainty is a technical problem whose solution is addressed by JCGM 100:2008,
the Guide to the expression of uncertainty in measurement (GUM), and by and its Supplements, JCGM 101:2008,
JCGM 102:2011 and JCGM 103 [3]. The present document assumes that a quantity of interest, the measurand (see
3.2.4), has been measured, with the result of the measurement expressed in a manner compatible with the principles
described in the GUM. In particular, it is assumed that corrections have been applied to account for all recognized
significant systematic effects.

In conformity assessment, a measurement result is used to decide if an item of interest conforms to a specified
requirement. The item might be, for example, a gauge block or digital voltmeter to be calibrated in compliance with
ISO/IEC 17025:2005 [23] or verified according to ISO 3650 [24], or a sample of industrial waste water. The requirement
typically takes the form of one or two tolerance limits (see 3.3.4) that define an interval of permissible values, called a
tolerance interval (see 3.3.5), of a measurable property of the item. Examples of such properties include the length of a
gauge block, the error of indication of a voltmeter, and the mass concentration of mercury in a sample of waste water.
If the true value of the property lies within the tolerance interval, it is said to be conforming, and non-conforming
otherwise.

NOTE The term ‘tolerance interval’ as used in conformity assessment has a different meaning from the same term as it is used
in statistics.

In general, deciding whether an item conforms will depend on a number of measured properties and there might be
one or more tolerance intervals associated with each property. There may also be a number of possible decisions with
respect to each property, given the result of a measurement. Having measured a particular quantity, for example, one
might decide to (a) accept the item, (b) reject the item, (c) perform another measurement and so on. This document
deals with items having a single scalar property with a requirement given by one or two tolerance limits, and a binary
outcome in which there are only two possible states of the item, conforming or non-conforming, and two possible
corresponding decisions, accept or reject. The concepts presented can be extended to more general decision problems.

In the evaluation of measurement data, knowledge of the possible values of a measurand is, in general, encoded
and conveyed by a probability density function (see 3.1.3), or a numerical approximation of such a function. Such
knowledge is often summarized by giving a best estimate (taken as the measured quantity value (see 3.2.6)) together
with an associated measurement uncertainty, or a coverage interval that contains the value of the measurand with a
stated coverage probability (see 3.2.8) . An assessment of conformity with specified requirements is thus a matter of
probability, based on information available after performing the measurement.

In a typical measurement, the measurand of interest is not itself observable. The length of a steel gauge block,
for example, cannot be directly observed, but one could observe the indication of a micrometer with its anvils in
contact with the ends of the block. Such an indication conveys information about the length of the block through
a measurement model that includes the effects of influence quantities such as thermal expansion and micrometer
calibration. In conformity assessment, an accept/reject decision is based on observable data (measured quantity
values, for example) that lead to an inference regarding the possible values of a non-observable measurand [37].

Because of uncertainty in measurement, there is always the risk of incorrectly deciding whether or not an item conforms

© JCGM 2012— All rights reserved vii
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to a specified requirement based on the measured value of a property of the item. Such incorrect decisions are of two
types: an item accepted as conforming may actually be non-conforming, and an item rejected as non-conforming may
actually be conforming.

By defining an acceptance interval (see 3.3.9) of permissible measured values of a measurand, the risks of incorrect
accept/reject decisions associated with measurement uncertainty can be balanced in such a way as to minimize the
costs associated with such incorrect decisions. This document addresses the technical problem of calculating the
conformance probability (see 3.3.7) and the probabilities of the two types of incorrect decisions, given a probability
density function (PDF) for the measurand, the tolerance limits and the limits of the acceptance interval.

A particular acceptance interval, and its relation to a corresponding tolerance interval is shown in figure 1.

T UA UT L A L

A c c e p t a n c e  i n t e r v a l

T o l e r a n c e  i n t e r v a l

Figure 1 – Binary conformity assessment where decisions are based on measured quantity values. The
true value of a measurable property (the measurand) of an item is specified to lie in a tolerance interval

defined by limits (TL, TU). The item is accepted as conforming if the measured value of the property lies in
an interval defined by acceptance limits (see 3.3.8) (AL, AU), and rejected as non-conforming otherwise.

Choosing the tolerance limits and acceptance limits are business or policy decisions that depend upon the consequences
associated with deviations from intended product quality. A general treatment of the nature of such decisions is beyond
the scope of this document; see, for example, references [14, 15, 34, 35, 36, 44].

viii © JCGM 2012— All rights reserved
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Evaluation of measurement data — The role of
measurement uncertainty in conformity assessment

1 Scope

This document provides guidance and procedures for assessing the conformity of an item (entity, object or system)
with specified requirements. The item might be, for example, a gauge block, a grocery scale or a blood sample. The
procedures can be applied where the following conditions exist:

— the item is distinguished by a single scalar quantity (see 3.2.1) (a measurable property) defined to a level of detail
sufficient to be reasonably represented by an essentially unique true value;

NOTE The GUM provides a rationale for not using the term ‘true’, but it will be used in this document when there is
otherwise a possibility of ambiguity or confusion.

— an interval of permissible values of the property is specified by one or two tolerance limits;

— the property can be measured and the measurement result (see 3.2.5) expressed in a manner consistent with
the principles of the GUM, so that knowledge of the value of the property can be reasonably described by (a) a
probability density function (see 3.1.3) (PDF), (b) a distribution function (see 3.1.2), (c) numerical approximations
to such functions, or (d) a best estimate, together with a coverage interval and an associated coverage probability.

The procedures developed in this document can be used to realize an interval, called an acceptance interval, of
permissible measured values of the property of interest. Acceptance limits can be chosen so as to balance the risks
associated with accepting non-conforming items (consumer’s risk) or rejecting conforming items (producer’s risk).

Two types of conformity assessment problems are addressed. The first is the setting of acceptance limits that will
assure that a desired conformance probability for a single measured item is achieved. The second is the setting of
acceptance limits to assure an acceptable level of confidence on average as a number of (nominally identical) items are
measured. Guidance is given for their solution.

This document contains examples to illustrate the guidance provided. The concepts presented can be extended to
more general conformity assessment problems based on measurements of a set of scalar measurands. Documents such
as references [19, 13] cover sector-specific aspects of conformity assessment.

The audience of this document includes quality managers, members of standards development organizations, accredita-
tion authorities and the staffs of testing and measuring laboratories, inspection bodies, certification bodies, regulatory
agencies, academics and researchers.

2 Normative references

The following referenced documents are indispensable for the application of this document.

JCGM 100:2008. Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM).

JCGM 101:2008. Evaluation of measurement data — Supplement 1 to the ”Guide to the expression of uncertainty in
measurement” — Propagation of distributions using a Monte Carlo method.

JCGM 102:2011. Evaluation of measurement data — Supplement 2 to the ”Guide to the expression of uncertainty in
measurement” — Extension to any number of output quantities.

JCGM 200:2012. International vocabulary of metrology — Basic and general concepts and associated terms (VIM3).

© JCGM 2012— All rights reserved 1
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ISO/IEC 17000:2004. Conformity assessment — Vocabulary and general principles.

ISO 3534-1:2006. Statistics – Vocabulary and symbols – Part 1: Probability and general statistical terms.

ISO 3534-2:2006. Statistics – Vocabulary and symbols – Part 2: Applied statistics.

3 Terms and definitions

For the purposes of this document the definitions of JCGM 100:2010, JCGM 101:2008 and JCGM 200:2012 apply,
unless otherwise indicated. Some of the most relevant definitions from these documents are given succinctly below.
Supplementary information, including notes and examples, can be found in the normative references.

Further definitions are also given, including definitions taken, or adapted, from other sources, which are especially
important in conformity assessment.

For definitions that cite other documents, a NOTE that occurs prior to such citation is a part of the cited entry; other
NOTES are particular to the present document.

In this document, the terms “indication” and “maximum permissible error (of indication)” are taken to be quantities
rather than values, in contrast with JCGM 200:2012.

NOTE Citations of the form [JCGM 101:2008 3.4] are to the indicated (sub)clauses of the cited reference.

3.1 Terms related to probability

3.1.1
probability distribution
distribution
probability measure induced by a random variable

NOTE There are numerous, equivalent mathematical representations of a distribution, including distribution function (see
clause 3.1.2), probability density function, if it exists (see clause 3.1.3), and characteristic function.

[Adapted from ISO 3534-1:2006 2.11]

3.1.2
distribution function
function giving, for every value ξ, the probability that the random variable X be less than or equal to ξ:

G
X

(ξ) = Pr(X ≤ ξ)

[JCGM 101:2008 3.2]

3.1.3
probability density function
PDF
derivative, when it exists, of the distribution function

g
X

(ξ) = dG
X

(ξ)/dξ

NOTE gX (ξ) dξ is the ‘probability element’

gX (ξ) dξ = Pr(ξ < X < ξ + dξ).

[Adapted from JCGM 101:2008 3.3]
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3.1.4
normal distribution
probability distribution of a continuous random variable X having the probability density function

g
X

(ξ) =
1

σ
√

2π
exp

[
−1

2

(
ξ − µ
σ

)2
]
,

for −∞ < ξ < +∞

NOTE 1 µ is the expectation (see 3.1.5) and σ is the standard deviation (see 3.1.7) of X.

NOTE 2 The normal distribution is also known as a Gaussian distribution.

[JCGM 101:2008 3.4]

3.1.5
expectation
for a continuous random variable X characterized by a PDF g

X
(ξ),

E(X) =

∫ ∞
−∞

ξg
X

(ξ) dξ

NOTE 1 The expectation is also known as the mean.

NOTE 2 Not all random variables have an expectation.

NOTE 3 The expectation of the random variable Z = F (X), for a given function F (X), is

E(Z) = E(F (X)) =

∫ ∞
−∞

F (ξ)gX (ξ) dξ

[JCGM 101:2008 3.6]

3.1.6
variance
for a continuous random variable X characterized by a PDF g

X
(ξ),

V (X) =

∫ ∞
−∞

[ξ − E(X)]
2
g
X

(ξ) dξ

NOTE Not all random variables have a variance.

[JCGM 101:2008 3.7]

3.1.7
standard deviation
positive square root of the variance

[JCGM 101:2008 3.8]

3.2 Terms related to metrology

3.2.1
quantity
property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number
and a reference

[JCGM 200:2012 1.1]
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3.2.2
quantity value
value of a quantity
value
number and reference together expressing magnitude of a quantity

[JCGM 200:2012 1.19]

3.2.3
true quantity value
true value of a quantity
true value
quantity value consistent with the definition of a quantity

[JCGM 200:2012 2.11]

3.2.4
measurand
quantity intended to be measured

[JCGM 200:2012 2.3]

NOTE In this document, the measurand is a measurable property of an item of interest.

3.2.5
measurement result
result of measurement
set of quantity values being attributed to a measurand together with any other available relevant information

NOTE A measurement result may be expressed in a number of ways, by giving, for example, (a) a measured quantity value
with an associated measurement uncertainty; (b) a coverage interval for the measurand with an associated coverage probability;
(c) a PDF; or (d) a numerical approximation to a PDF.

[JCGM 200:2012 2.9]

3.2.6
measured quantity value
value of a measured quantity
measured value
quantity value representing a measurement result

NOTE A measured quantity value is also known as an estimate, or best estimate, of a quantity.

[JCGM 200:2012 2.10]

3.2.7
coverage interval
interval containing the set of true quantity values of a measurand with a stated probability, based on the information
available

[JCGM 200:2012 2.36]

3.2.8
coverage probability
probability that the set of true quantity values of a measurand is contained within a specified coverage interval

[JCGM 200:2012 2.37]
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3.2.9
indication
quantity provided by a measuring instrument or measuring system

NOTE 1 An indication is often given as the position of a pointer for an analogue output or the displayed or printed number
for a digital output.

NOTE 2 An indication is also known as a reading.

[Adapted from JCGM 200:2012 4.1]

3.3 Terms related to conformity assessment

3.3.1
conformity assessment
activity to determine whether specified requirements relating to a product, process, system, person or body are fulfilled

[Adapted from ISO/IEC 17000:2004 2.1]

3.3.2
inspection
conformity assessment by observation and judgement accompanied, as appropriate, by measurement, testing or gauging

[Adapted from ISO 3534-2:2006 4.1.2]

NOTE A measurement performed as part of conformity assessment is sometimes called an inspection measurement.

3.3.3
specified requirement
need or expectation that is stated

NOTE Specified requirements may be stated in normative documents such as regulations, standards and technical specifications.

[ISO/IEC 17000:2004 3.1]

NOTE 1 The term ‘expectation’ in the context of a specified requirement is not related to the expectation of a random
variable; see definition 3.1.5.

NOTE 2 In this document, a typical specified requirement takes the form of a stated interval of permissible values of a
measurable property of an item.

EXAMPLE 1 A sample of industrial waste water (the item) is required to have a mass concentration of dissolved mercury
(the property) of no greater than 10 ng/L.

EXAMPLE 2 A grocery scale (the item) is required to have an indication R (the property) in the interval
[999.5 g ≤ R ≤ 1 000.5 g] when measuring a standard 1 kg weight.

3.3.4
tolerance limit
specification limit
specified upper or lower bound of permissible values of a property

[Adapted from ISO 3534-2:2006 3.1.3]

3.3.5
tolerance interval
interval of permissible values of a property

[Adapted from ISO 10576-1:2003 3.5]
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NOTE 1 Unless otherwise stated in a specification, the tolerance limits belong to the tolerance interval.

NOTE 2 The term ‘tolerance interval’ as used in conformity assessment has a different meaning from the same term as it is
used in statistics.

NOTE 3 A tolerance interval is called a ‘specification zone’ in ASME B89.7.3.1:2001 [2].

3.3.6
tolerance
specified tolerance
difference between upper and lower tolerance limits

3.3.7
conformance probability
probability that an item fulfills a specified requirement

3.3.8
acceptance limit
specified upper or lower bound of permissible measured quantity values

[Adapted from ISO 3534-2:2006 3.1.6]

3.3.9
acceptance interval
interval of permissible measured quantity values

NOTE 1 Unless otherwise stated in the specification, the acceptance limits belong to the acceptance interval.

NOTE 2 An acceptance interval is called an ‘acceptance zone’ in ASME B89.7.3.1 [2].

3.3.10
rejection interval
interval of non-permissible measured quantity values

NOTE 1 A rejection interval is called an ‘rejection zone’ in ASME B89.7.3.1 [2].

3.3.11
guard band
interval between a tolerance limit and a corresponding acceptance limit

NOTE The guard band includes the limits.

3.3.12
decision rule
documented rule that describes how measurement uncertainty will be accounted for with regard to accepting or
rejecting an item, given a specified requirement and the result of a measurement

[Adapted from ASME B89.7.3.1-2001 [2]]

3.3.13
specific consumer’s risk
probability that a particular accepted item is non-conforming

3.3.14
specific producer’s risk
probability that a particular rejected item is conforming
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3.3.15
global consumer’s risk
consumer’s risk
probability that a non-conforming item will be accepted based on a future measurement result

3.3.16
global producer’s risk
producer’s risk
probability that a conforming item will be rejected based on a future measurement result

3.3.17
measurement capability index
tolerance divided by a multiple of the standard measurement uncertainty associated with the measured value of a
property of an item

NOTE In this document the multiple is taken to be 4; see clause 7.6.3

3.3.18
maximum permissible error (of indication)
MPE
for a measuring instrument, maximum difference, permitted by specifications or regulations, between the instrument
indication and the quantity being measured

NOTE 1 When more than one maximum difference is specified, the term “maximum permissible errors” is used; for example,
a specified maximum negative difference and a specified maximum positive difference.

NOTE 2 The error of indication can be written as E = R−R0, where R is the indication and R0 denotes the indication of an
ideal measuring instrument measuring the same measurand Y . In the testing and verification of a measuring instrument, the
error of indication is typically evaluated by measuring a calibrated reference standard.

4 Conventions and notation

For the purposes of this document the following conventions, notation and terminology are adopted.

4.1 In the GUM, the standard uncertainty associated with an estimate y of a measurand Y is written as uc(y). The
subscript “c”, denoting “combined” standard uncertainty, is viewed as redundant and is not used in this document.
(See JCGM 101:2008 4.10).

4.2 An expression written A =: B means that B is defined by A.

4.3 When there is no potential for confusion, the symbol u, rather than u(y), will be used for notational simplicity.
The expanded uncertainty U is generally taken to be U = ku using a coverage factor of k = 2; the value of k is given
explicitly when there is potential for ambiguity.

4.4 A property of interest (the measurand) is regarded as a random variable Y with possible values η. When Y is
measured, evaluation of the measurement data yields a measured quantity value ηm, taken to be a realization of an
observable random variable Ym. In general, the measured value ηm will differ from Y by an unknown error E, say,
which depends on random and systematic effects.

4.5 A tolerance interval specifies permissible values of the measurand Y . A conformity assessment decision is based
on the measured value ηm and the relation of ηm to a defined acceptance interval.

4.6 Knowledge of the quantities Y and Ym is encoded and conveyed by conditional PDFs whose forms depend on
available information. Conditional PDFs are written with a vertical bar, with information to the right of the bar
regarded as given. The PDF for a measurand Y before measurement is gY |I(η|I), where the symbol I denotes prior
information.
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4.7 Following a measurement of a property of interest, yielding an observed measured value ηm, the post-
measurement PDF for Y is gY |ηm,I(η|ηm, I).

4.8 The analogous PDFs for the possible values ηm of the measuring system output quantity Ym are (a), gYm|I(ηm|I),
encoding belief in possible measured values given only the prior information I, and (b), gYm|η,I(ηm|η, I), the analogous
PDF when, in addition to the prior information I, the measurand is assumed to have a given true value Y = η.

4.9 In the interests of brevity, in this document explicit display of the fixed prior information I is largely omitted.
Also, PDFs for Y and Ym are expressed in terms of symbols g and h respectively, using the following notation in which
subscripts are largely suppressed:

— For pre-measurement knowledge of the measurand Y ,

gY |I(η|I) =: g
0
(η) ;

— For post-measurement knowledge of the measurand Y ,

gY |ηm,I(η|ηm, I) =: g (η|ηm) ;

— Knowledge of possible measured values given only the prior information I,

gYm|I(ηm|I) =: h0(ηm) ;

— Knowledge of Ym assuming, in addition to information I, a given value Y = η of the measurand,

gYm|η,I(ηm|η, I) =: h (ηm|η) .

These PDFs are not independent but are related by Bayes’ theorem (see clause 6.2.)

4.10 According to Resolution 10 of the 22nd CGPM (2003) “ . . . the symbol for the decimal marker shall be
either the point on the line or the comma on the line . . . ”. The JCGM has decided to adopt, in its documents in
English, the point on the line.

5 Tolerance limits and tolerance intervals

5.1 Conformity assessment measurements

5.1.1 Consider a situation where a property of an item of interest, such as the error of indication of a voltmeter, is
measured in order to decide whether or not the item conforms to a specified requirement. Such a test of conformity
comprises a sequence of three operations:

— measure the property of interest;

— compare the measurement result with the specified requirement;

— decide on a subsequent action.

5.1.2 In practice, once the measurement result has been obtained, the comparison/decision operations are typically
implemented using a previously established and stated decision rule (see 3.3.12) that depends upon the measurement
result, the specified requirement, and the consequences of an incorrect decision.

5.1.3 Guidance is available regarding the formulation of a decision rule. ISO 14253-1 [21] and ASME B89.7.3.1
[2] provide guidelines for documenting a chosen decision rule and for describing the role of measurement uncertainty
in setting acceptance limits. These documents address decision rules involving two or more possible decisions, and
include the binary decision rule, with which this document is concerned, as a special case.
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5.1.4 A measurement performed as part of a conformity assessment is designed to obtain information sufficient
to enable a decision to be made with an acceptable level of risk. An appropriate measurement strategy will balance
the cost of reducing measurement uncertainty against the benefit of more certain knowledge of the true value of the
measurand.

5.1.5 An inspection measurement together with an associated decision rule is thus closely related to matters such
as costs and risks. As such, the design of a satisfactory conformity assessment is often not a purely technical exercise.
If the goal is to minimize cost, then given a suitable economic model the problem can be reduced to direct calculation.

5.2 Permissible and non-permissible values: tolerance intervals

5.2.1 In this document, specified requirements for a measurand of interest consist of limiting values, called tolerance
limits, that separate intervals of permissible values of the measurand from intervals of non-permissible values [22].
Intervals of permissible values, called tolerance intervals, are of two kinds:

— a one-sided tolerance interval with either an upper or a lower tolerance limit;

— a two-sided tolerance interval with both upper and lower tolerance limits.

In either case, an item conforms to the specified requirement if the true value of the measurand lies within the tolerance
interval and is non-conforming otherwise. The above tolerance intervals are illustrated in figure 2.

5.2.2 Seemingly one-sided tolerance intervals often have implied additional limits, for physical or theoretical reasons,
that are not explicitly stated [22]. Such tolerance intervals are effectively two-sided, having one specified limit and
one implied limit; see examples 4 and 5 below.

T U

T o l e r a n c e  i n t e r v a l

T L

T o l e r a n c e  i n t e r v a l

( a )

( b )

( c )
T UT L

T o l e r a n c e  i n t e r v a l

Figure 2 – Tolerance intervals. (a) A one-sided interval having a single lower tolerance limit TL; (b) a
one-sided interval having a single upper tolerance limit TU; (c) a two-sided interval having lower and

upper tolerance limits. The difference TU − TL is called the tolerance.

NOTE 1 In some cases, such as food safety or environmental protection, specifying the tolerance limits in conformity assess-
ment measurements may involve uncertainties related to the difficulty in assessing the consequences of incorrect decisions [29].
A related problem in reliability analysis, called completeness uncertainty, is associated with unanalysed contributions to risk
[31].

NOTE 2 Matters such as completeness uncertainty bear no relation to the measurement uncertainty associated with an
estimate of a measurand resulting from an inspection measurement. In this document the tolerance limits are taken to be fixed
constants.

© JCGM 2012— All rights reserved 9



JCGM 106:2012

5.3 Examples of tolerance limits

EXAMPLE 1 Single upper tolerance limit

The breakdown voltage Vb for a certain type of Zener diode is specified to be no greater than −5.4 V. For a conforming diode,
Vb lies in the open interval Vb ≤ −5.4 V.

EXAMPLE 2 Single lower tolerance limit

A metal container for soft drinks is required to have a bursting strength B of not less than 490 kPa. Conforming values of B
lie in the open interval B ≥ 490 kPa.

EXAMPLE 3 Explicit upper and lower tolerance limits

An OIML Class E1 1 kg weight [25] is specified to have a maximum permissible error (MPE) of 500 µg. This means that the
mass m of the weight is specified to be not less than 0.999 999 5 kg and not more than 1.000 000 5 kg. A conforming 1 kg weight
is one for which the mass error E = m−m0, with m0 = 1 kg, lies in the interval −500 µg ≤ E ≤ 500 µg.

EXAMPLE 4 Explicit upper and implied lower tolerance limits

An environmental regulation requires the mass concentration X of mercury in a stream of industrial waste water to be no
greater than 10 ng/L, which is an explicit upper tolerance limit. Since the mass concentration cannot be less than zero, there
is an implied lower tolerance limit of 0 ng/L. A sample of waste water complies with the regulation if the mass concentration
of mercury in the sample lies in the interval 0 ng/L ≤ X ≤ 10 ng/L.

EXAMPLE 5 Explicit lower and implied upper tolerance limits

Powdered sodium benzoate, used as a food preservative, is required to have a purity P , expressed as a mass fraction on a dry
basis in percent, of no less than 99.0 %, which is an explicit lower tolerance limit. The purity cannot be greater than 100 %,
which is an implied upper tolerance limit. A conforming sample of sodium benzoate is one for which the sample purity lies in
the interval 99.0 % ≤ P ≤ 100 %.

6 Knowledge of the measurand

6.1 Probability and information

6.1.1 In measurements performed as part of a conformity assessment, knowledge of a property of interest (the
measurand) is modelled by a conditional probability density function (PDF) whose form depends on available infor-
mation. Such information always has two components: that which is available before performing the measurement
(called prior information) and the additional information supplied by the measurement [38].

6.1.2 The PDF for a property of interest (the measurand) encodes and conveys belief in its possible values, given a
particular state of knowledge. A poorly known measurand generally has a broad PDF, relative to the requirements of
a conformity assessment, indicating a wide interval of possible values compatible with meagre information. Performing
a measurement provides fresh information that serves to sharpen the PDF and to narrow the interval of possible values
of the measurand.

6.1.3 The effect of a measurement is thus to update a pre-measurement (or prior) state of knowledge, yielding a post-
measurement (or posterior) state of knowledge that includes the measurement data. The rule for this transformation
is called Bayes’ theorem and the underlying mathematical framework is known as Bayesian probability theory. In this
document the results of this framework are used without detailed development or proof. A considerable literature is
available; see, for example, references [4, 5, 16, 26, 27, 39].

6.2 Bayes’ theorem

6.2.1 In conformity assessment, a measurable property Y of an item of interest is regarded as a random variable
with possible values denoted by η. Before measuring Y, reasonable belief in its possible values is characterized by a
prior (pre-measurement) PDF g

0
(η) whose form is independent of the measuring system (see clause 4.9).
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6.2.2 The prior PDF g0(η) is often assigned based on knowledge acquired by previous measurements of similar
items. Methods for assigning a prior PDF for a property of interest are discussed in Annex B.

6.2.3 In a typical inspection measurement, the quantity Y is measured using a procedure designed to provide
sufficient information to assess conformity with a specified requirement.

NOTE 1 The same symbol is used for a quantity and for the random variable that represents that quantity (see [GUM 4.1.1
note 1]).

NOTE 2 Guidance on the assignment of PDFs in some common situations is given in JCGM 101:2008 and Annex B.

6.2.4 The output of the measuring system is a quantity regarded as a random variable Ym, with possible values
denoted by ηm. Measurement of Y yields a particular realization, the measured quantity value ηm (see clauses 3.2.6
and 4.4), and the resulting posterior (post-measurement) PDF for Y , given this new information, is written as

g (η|Ym = ηm) =: g (η|ηm) .

6.2.5 The prior and posterior PDFs are related by Bayes’ theorem

g (η|ηm) = Cg0(η)h (ηm|η) , (1)

where, given a measured value ηm, C is a constant chosen such that
∫∞
−∞ g (η|ηm) dη = 1. The term h (ηm|η) in

expression (1) is the PDF for the possible values of Ym, given some particular value Y = η of the measurand.

6.2.6 Expressed as a function of η for a measured value ηm, the PDF h (ηm|η) is called the likelihood of η given
ηm, and is written as

h (ηm|η) =: L (η; ηm) .

A measurement can be viewed in terms of stimulus and response or in terms of input and output. In this view, the
likelihood function L (η; ηm) characterizes the distribution of plausible stimuli or inputs (values of η) that might have
caused the observed response or output (measured value ηm).

6.2.7 The form of the likelihood function will depend on the specific measurement problem and the measuring
system, as described in a mathematical model, as well as on other relevant information such as historical data,
instrument calibrations and the results of measurements of calibrated artefacts or standard reference materials, and
experience with similar systems. In many cases of practical interest, the likelihood function can be characterised by a
normal (Gaussian) distribution.

6.2.8 Bayes’ theorem shows how the posterior (post-measurement) state of knowledge is derived from a combi-
nation of prior (pre-measurement) information, encoded in the prior distribution, and information supplied by the
measurement, represented by the likelihood function.

6.2.9 In many cases, the measuring system is employed in order to supplement relatively meagre prior knowledge
of the measurand with accurate measurement information. In such a case, the posterior (post-measurement) state of
knowledge PDF is essentially defined by the likelihood function (encoding the measurement information), i.e.,

g (η|ηm) = Ch (ηm|η)

to a close approximation, where C is a constant.

6.3 Summary information

6.3.1 Best estimate and standard uncertainty

A measurement result is often summarized by giving an estimate of a measurand and a parameter that characterizes
the dispersion of probable values about this estimate. In this document, the estimate y of a property Y is taken to be
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the expectation (see 3.1.5) E(Y |ηm). The associated dispersion parameter u(y) = u, called the standard uncertainty,
is taken to be the standard deviation (see 3.1.7) of Y , the positive square root of the variance (see 3.1.6) V (Y |ηm).
E(Y |ηm) and V (Y |ηm) are given by

E(Y |ηm) = y =

∫ ∞
−∞

ηg (η|ηm) dη, V (Y |ηm) = u2 =

∫ ∞
−∞

(η − y)2g (η|ηm) dη.

6.3.1.1 The standard uncertainty u characterizes the dispersion of Y about the estimate y. When the PDF for Y
is single-peaked (unimodal) and symmetric, the estimate y is also the most probable value of Y, i.e., the mode of the
distribution.

6.3.1.2 For a measurement analysed according to JCGM 100:2010 (GUM), evaluation of the measurement data
yields an estimate of the measurand (measured quantity value) ηm, and an associated standard uncertainty um. The
prior information is assumed to be so meagre that the post-measurement PDF g (η|ηm) can be summarised by the
estimate y = ηm and the associated standard uncertainty u = um (see clause 7.6.1).

6.3.2 Coverage intervals

6.3.2.1 Following a measurement, the probability that Y is no greater than a given value a is

Pr (Y ≤ a|ηm) = G(a) =

∫ a

−∞
g (η|ηm) dη,

where G(z) =
∫ z
−∞ g (η|ηm) dη is the distribution function of Y , given data ηm.

6.3.2.2 It follows that the probability p that Y lies in the interval [a, b], with a < b, is

p = Pr (a ≤ Y ≤ b|ηm) =

∫ b

a

g (η|ηm) dη = G(b)−G(a). (2)

6.3.2.3 An interval such as [a, b] is called a coverage interval for Y , and p is the associated coverage probability.
Guidance on constructing a coverage interval with a desired coverage probability, including the case of a discrete
approximation to the distribution function obtained by a Monte Carlo method, is given in JCGM 101:2008.

6.3.2.4 When the PDF for Y is symmetric and unimodal, an important and widely-used coverage interval is centred
on the best estimate y, with a length equal to a multiple of the standard uncertainty u. The GUM defines an additional
measure of uncertainty called the expanded uncertainty, U , obtained by multiplying the standard uncertainty u by a
coverage factor k:

U = ku. (3)

6.3.2.5 The coverage factor is chosen in order to achieve a desired coverage probability associated with the coverage
interval [y − U, y + U ]. The relationship between k and the associated coverage probability depends on the PDF for
Y .

NOTE 1 A coverage interval of the form [y−U, y+U ] is sometimes called an uncertainty interval, as in ISO 10576-1:2003 3.7 [22].

NOTE 2 If the PDF for Y is asymmetric, it may be more appropriate to determine the shortest coverage interval for a given
coverage probability. See JCGM 101:2008 5.3.4 for guidance on this calculation.

7 Probability of conformity with specified requirements

7.1 General rule for calculation of conformance probability

7.1.1 An item conforms to a specified requirement if the true value of its associated property Y lies in the tolerance
interval. Knowledge of Y is conveyed by a PDF g (η|ηm) so that a statement of conformity is always an inference,
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with some probability of being true. Denoting the set of permissible (conforming) values of Y by C , the conformance
probability, denoted by pc, is given by

pc = Pr (Y ∈ C |ηm) =

∫
C
g (η|ηm) dη. (4)

7.1.2 Expression (4) gives the general rule for calculating the probability that an item conforms to a specified
requirement based on measurement of a relevant property of the item. Given a two-sided tolerance interval for the
measurand Y , for example, with lower limit TL and upper limit TU, C = [TL, TU] and the conformance probability is

pc =

∫ TU

TL

g (η|ηm) dη.

7.1.3 Since the item either does, or does not, conform to specification, the probability that it does not conform is

pc = 1− pc.

7.2 Conformance probabilities with normal PDFs

7.2.1 The conformance probability depends on a state of knowledge of a measurand Y as encoded and conveyed by
the PDF g (η|ηm). In many cases it is reasonable to characterise knowledge of Y by a normal distribution (see 3.1.4)
and this probability can be calculated. If the prior distribution is normal and the measuring system (i.e., the likelihood
function) is characterised by a normal distribution then the distribution g (η|ηm) is also a normal distribution.

7.2.2 More generally, if the likelihood function is characterised by a normal distribution and the prior information
is meagre, then the posterior (post-measurement) PDF will be approximately normal. In such a case, g (η|ηm) can be
approximated adequately by a normal distribution with expectation (mean) and standard deviation given by the best
estimate y and standard uncertainty u calculated as in clause 6.3.1.

NOTE 1 A normal distribution is completely specified by its expectation (mean) and standard deviation.

NOTE 2 Some properties of normal PDFs are reviewed in Annex A.

7.2.3 Because of their familiarity and widespread use, normal PDFs will be used to illustrate the calculation of
conformance probabilities in many examples in this document. Such calculations can be extended to the case where
a small number of indications gives rise to a scaled and shifted t-distribution (see JCGM 101:2008 6.4.9).

7.2.4 Suppose that the PDF g (η|ηm) for the measurand Y is (or is well approximated by) a normal distribution
specified by a best estimate (expectation) y and standard uncertainty (standard deviation) u. Then g (η|ηm) is given
by

g (η|ηm) =
1

u
√

2π
exp

[
−1

2

(
η − y
u

)2
]

=: ϕ
(
η; y, u2

)
. (5)

7.2.5 In general, the estimate y depends on ηm, i.e., y = y(ηm). When knowledge of Y is meagre before the
measurement, then typically y ≈ ηm; see clause A.4.4 for an example where this is not the case.

7.2.6 From the steps leading to expression (2), the probability that Y lies in the interval [a, b], given the PDF (5),
is

Pr (a ≤ Y ≤ b|ηm) = Φ

(
b− y
u

)
− Φ

(
a− y
u

)
, (6)

where y = y(ηm) and

Φ(z) =
1√
2π

∫ z

−∞
exp(−t2/2) dt
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is the standard normal distribution function (see Annex A).

7.3 One-sided tolerance intervals with normal PDFs

7.3.1 Single lower tolerance limit

Figure 3 shows a one-sided tolerance interval with a single lower tolerance limit TL. Conforming values of a property
of interest Y lie in the interval η ≥ TL. Knowledge of Y following an inspection measurement is conveyed by a normal
PDF, shown superimposed on the tolerance interval. The best estimate y lies in the tolerance interval; the shaded
region to the left of TL indicates the probability that the item does not conform with specification. From expression (6),
with a = TL, b→∞, and noting that Φ(∞) = 1, the conformance probability is

pc = 1− Φ

(
TL − y
u

)
. (7)

Since Φ(t) + Φ(−t) = 1, the probability (7) can be written

pc = Φ

(
y − TL
u

)
. (8)

u

LT  

T o l e r a n c e  i n t e r v a l

�y
Figure 3 – Tolerance interval with a single lower tolerance limit TL. Knowledge of a quantity Y (the
measurable property of interest) following measurement is characterized by a normal PDF with best
estimate y and associated standard uncertainty u. Conforming values of Y lie in the interval η ≥ TL.

7.3.2 Single upper tolerance limit

Figure 4 shows a normal PDF superimposed on a one-sided tolerance interval with a single upper tolerance limit TU.
Conforming values of a property of interest Y lie in the interval η ≤ TU. In this case, the shaded region to the right
of TU indicates the probability that the item does not conform with specification. From expression (6), with a→ −∞,
b = TU, and noting that Φ(−∞) = 0, the conformance probability is

pc = Φ

(
TU − y
u

)
. (9)

14 © JCGM 2012— All rights reserved



JCGM 106:2012

UT

u

 

T o l e r a n c e  i n t e r v a l

�y
Figure 4 – As figure 3 except with a single upper tolerance limit TU. Conforming values of Y lie in the

interval η ≤ TU.

7.3.3 General approach with single tolerance limits

Probabilities (8) and (9) are of the same form and can be written as

pc = Φ(z), (10)

where z = (y − TL)/u for a lower limit and z = (TU − y)/u for an upper limit. In both cases, pc is greater than or
equal to 1/2 for an estimate y in the tolerance interval (z ≥ 0) and less than 1/2 otherwise. Table 1 shows values of z
for several values of the conformance probability pc.

Table 1 – Conformance (pc) and non-conformance (pc = 1− pc) probabilities for one-sided tolerance
intervals and normal PDFs. For a lower limit, z = (y − TL)/u; for an upper limit, z = (TU − y)/u. In both

cases, z ≥ 0 for an estimate y in the tolerance interval

pc pc z

0.80 0.20 0.84

0.90 0.10 1.28

0.95 0.05 1.64

0.99 0.01 2.33

0.999 0.001 3.09

EXAMPLE 1 The breakdown voltage Vb of a Zener diode is measured, yielding a best estimate vb = −5.47 V with associated
standard uncertainty u = 0.05 V. Specification of the diode requires Vb ≤ −5.40 V, which is an upper limit on the breakdown
voltage. Then z = [−5.40 − (−5.47)]/0.05 = 1.40, and from expression (10), pc = Φ(1.40) = 0.92. There is a 92 % probability
that the diode conforms to specification.

EXAMPLE 2 A metal container is destructively tested using pressurized water in a measurement of its bursting strength B.
The measurement yields a best estimate b = 509.7 kPa, with associated standard uncertainty u = 8.6 kPa. The container
specification requires B ≥ 490 kPa, which is a lower limit on the bursting strength. Then z = (509.7 − 490)/8.6 = 2.3 and,
from expression (10), pc = Φ(2.3) = 0.99. There is a 99 % probability that the container conformed to specification prior to the
destructive test.

7.4 Two-sided tolerance intervals with normal PDFs

Figure 5 shows a two-sided tolerance interval with tolerance limits TL and TU and length T = TU − TL defining the
tolerance T . As previously, knowledge of a measurand Y is assumed to be conveyed by a normal PDF. The estimate
y lies in the tolerance interval and there is a visible fraction of the probability in the region η > TU beyond the upper
tolerance limit.
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 UT LT  

T o l e r a n c e  i n t e r v a l
T

�y

u

Figure 5 – As figure 3 except with a two-sided tolerance interval. The length, TU − TL, of the interval is
equal to the tolerance T . Conforming values of Y lie in the interval TL ≤ η ≤ TU.

Using expression (6) with b = TU and a = TL yields the conformance probability

pc = Φ

(
TU − y
u

)
− Φ

(
TL − y
u

)
. (11)

EXAMPLE A sample of SAE Grade 40 motor oil is required to have a kinematic viscosity Y at 100 ◦C of no less than
12.5 mm2/s and no greater than 16.3 mm2/s. The kinematic viscosity of the sample is measured at 100 ◦C, yielding a best
estimate y = 13.6 mm2/s and associated standard uncertainty u = 1.8 mm2/s. Following expression (11), form the quantities

(TU − y)/u = (16.3− 13.6)/1.8 = 1.5, (TL − y)/u = (12.5− 13.6)/1.8 = −0.6,

so that

pc = Φ(1.5)− Φ(−0.6) = 0.93− 0.27 = 0.66.

There is a 66 % probability that the sample of motor oil conforms to specification.

7.5 Conformance probability and coverage intervals

7.5.1 A measurement result can be summarized by giving a coverage interval with an associated coverage probability
(see clause 6.3.2) rather than an explicit PDF for a measurand Y . In such a case, a statement of conformance
probability can be made by comparing the coverage interval with the tolerance interval. If a coverage interval with
coverage probability p lies wholly within the tolerance interval, then pc cannot be less than p. This observation is
illustrated in figure 6, which shows two 95 % coverage intervals near an upper tolerance limit.

7.5.2 Interval (a) extends beyond the tolerance limit and without knowing the form of the PDF for Y , no definite
statement can be made about the conformance probability.
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c 9 5 %p ≥

T U

( a )

( b )

T o l e r a n c e  i n t e r v a l

C o n f o r m i t y  c a n n o t  b e  d e c i d e d

Figure 6 – Two 95 % coverage intervals for a measurand Y near an upper tolerance limit TU. Interval (a)
extends beyond the tolerance limit and the conformity cannot be decided without knowledge of the PDF

for Y . Interval (b) lies wholly within the tolerance interval; for this interval pc ≥ 95 %.

7.5.3 All values in interval (b) are less than the tolerance limit and there are conforming values of Y that do not
belong to this interval, so that pc ≥ 95 %.

7.5.4 In general, if [ηlow, ηhigh] is a coverage interval for Y , with coverage probability p, then

– for a single upper tolerance limit TU, pc ≥ p if ηhigh ≤ TU;

– for a single lower tolerance limit TL, pc ≥ p if ηlow ≥ TL;

– for a two-sided interval with upper and lower tolerance limits TU and TL, pc ≥ p if ηlow ≥ TL and ηhigh ≤ TU.

NOTE 1 Comparison of a coverage interval for a property of interest with an interval of permissible values is the basis for
deciding conformity with specification as described in ISO 10576-1 [22].

NOTE 2 Given the PDF for Y , the conformance probability can always be calculated. The PDF for a measurand is more
informative than a coverage interval with its associated coverage probability.

NOTE 3 When a conformity assessment of a measuring instrument is performed — particularly when the assessment is
regulated by specific standards — the definition of the measurand, and consequently the uncertainty evaluation, may not be
straightforward and may require specific attention.

7.6 Measurement capability index Cm

7.6.1 Consider the case where prior information is so meagre that knowledge regarding possible values of a measured
property Y can be considered to be completely supplied by the measurement. In such a case, if the distribution for Y
is assumed to be a normal PDF g (η|ηm) = ϕ

(
η; y, u2

)
, then y ≈ ηm and u ≈ um (see clause A.4.4.3). In the following

subclauses it is assumed that this is the case, and a measurement result will be summarised by the two parameters
(ηm, um), taken to be the expectation and standard deviation of a normal PDF.

7.6.2 A parameter that characterises the quality of the measurement, relative to a requirement specified by a
tolerance, is called the measurement capability index (see 3.3.17) defined by

Cm =
TU − TL

4um
=

T

4um
=

T

2U
, (12)

where U = 2um is the expanded uncertainty with coverage factor k = 2.

7.6.3 The factor of 4 in expression (12) is arbitrary; the particular choice is motivated by the widespread use of
the coverage interval [ηm − 2um, ηm + 2um] in reporting the result of a measurement. In the case where g (η|ηm) is a
normal PDF, the coverage probability for such an interval is approximately 95 %.
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7.6.4 There is a close connection between Cm and other derived parameters that have been used to characterize
measurement quality in various contexts. Among these are gauging ratio, gauge maker’s rule, test uncertainty ratio
(TUR) [32] and test accuracy ratio (TAR) [1]. Such parameters are typically stated in ratio form such as a 10-to-1
rule or a TUR of 4:1. Care has to be taken when such rules are encountered because they are sometimes ambiguously
or incompletely defined. Definition (12), on the other hand, makes clear that a statement such as Cm ≥ 4 means
that um ≤ T/16.

7.6.5 In the calibration or verification of a measuring instrument, a specified requirement is often expressed in terms
of a maximum permissible error (of indication) (see 3.3.18). Such a requirement means that when the instrument
is used to measure a quantity Y , the error of indication must lie in an interval defined by specified upper and lower
limits. In the common case of a symmetric interval [−Emax, Emax], the tolerance is T = 2Emax and the measurement
capability index is

Cm =
2Emax

2U
=
Emax

U
.

In this expression, U is the expanded uncertainty, for a coverage factor k = 2, associated with a measurement of the
error of indication of the instrument.

7.7 Measurement capability index and conformance probability

7.7.1 For a normal PDF, expression (11) gives the conformance probability pc in terms of a particular pair of
tolerance limits (TL, TU) and a particular measurement result summarized by (y, u). Taking y = ηm and u = um, this
expression can be re-written in a form suitable for a general measurement problem by defining a quantity

ỹ =
ηm − TL

T
. (13)

For an estimate ηm in the tolerance interval, ỹ lies in the interval 0 ≤ ỹ ≤ 1.

7.7.2 For a normal post-measurement PDF ϕ
(
η; ηm, u

2
m

)
, expression (11) can then be written, using expressions

(12) and (13),

pc = Φ [4Cm(1− ỹ)]− Φ(−4Cmỹ) = pc(ỹ, Cm), (14)

so that pc is completely determined by the two quantities ỹ and Cm.

7.7.3 It is often the case that the standard uncertainty um associated with an estimate ηm has a fixed value
that depends on the design of the measuring system, but is independent of ηm. A series of water samples, for
example, might be inspected to determine, for each sample, a concentration of dissolved mercury, using a measurement
procedure that yields different estimates, each having the same associated standard uncertainty um. In such a case the
measurement capability index Cm = T/4um is fixed, and a question as to whether or not a measured property conforms
to specification with an acceptable probability can be decided based on the estimate ηm, using expressions (13) and
(14) with Cm fixed.

NOTE A case where the standard uncertainty um is proportional to the estimate ηm is treated in [13, Appendix A].
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Figure 7 – Measurement capability index Cm = T/(4um) versus ỹ = (ηm − TL)/T , showing the locus of
constant 95 % conformance probability pc. The curve separates regions of conformity and non-conformity
at a 95 % level of confidence. The post-measurement distribution for the measurand Y is taken to be the

normal PDF ϕ
(
η; ηm, u2m

)
.

7.7.4 There is an infinite number of pairs (ỹ, Cm) that yield a given conformance probability pc via expression
(14). Figure 7 shows Cm versus ỹ along a curve of constant 95 % conformance probability for estimates ηm within the
tolerance interval 0 ≤ ỹ ≤ 1. The curve separates regions of conformity (unshaded) and non-conformity (shaded) at a
95 % level of confidence.

7.7.5 The horizontal axis in figure 7 corresponds to Cm = 1, or um = T/4. For this relatively large standard
uncertainty it can be seen that pc ≥ 95 % only for 0.45 ≤ ỹ ≤ 0.55. If the measured property was required to conform
to specification with at least a 95 % level of confidence, an acceptable estimate ηm would thus have to lie in the central
approximately 10 % of the tolerance interval.

8 Acceptance intervals

8.1 Acceptance limits

8.1.1 A decision to accept an item as conforming, or reject it as non-conforming, to specification is based on a
measured value ηm of a property of the item in relation to a stated decision rule that specifies the role of measurement
uncertainty in formulating acceptance criteria. An interval of measured values of a property that results in acceptance
of the item is called an acceptance interval (see 3.3.9), defined by one or two acceptance limits (see 3.3.8).

8.1.2 As suggested in the Introduction, acceptance limits and corresponding decision rules are chosen in such a way
as to manage the undesired consequences of incorrect decisions. There are a number of widely used decision rules that
are simple to implement. They can be applied when knowledge of a property of interest is summarised in terms of a
best estimate and corresponding coverage interval. Two such decision rules are described in the following subclauses.

8.2 Decision rule based on simple acceptance

8.2.1 An important and widely used decision rule is known as simple acceptance [2] or shared risk [20]. Under
such a rule, the producer and user (consumer) of the measurement result agree, implicitly or explicitly, to accept
as conforming (and reject otherwise) an item whose property has a measured value in the tolerance interval. As

© JCGM 2012— All rights reserved 19



JCGM 106:2012

the alternative name ‘shared risk’ implies, with a simple acceptance decision rule the producer and user share the
consequences of incorrect decisions.

8.2.2 In practice, in order to keep the chances of incorrect decisions to levels acceptable to both producer and user,
there is usually a requirement that the measurement uncertainty has been considered and judged to be acceptable for
the intended purpose.

8.2.3 One approach to such consideration is to require, given an estimate of a measured quantity, that the associated
expanded uncertainty U, for a coverage factor k = 2, must satisfy U ≤ Umax, where Umax is a mutually agreed maximum
acceptable expanded uncertainty. This approach is illustrated by the following example.

EXAMPLE In legal metrology [40], a decision rule based on simple acceptance has been used in the verification of measuring
instruments. Consider such an instrument that is required to have an error of indication in the interval [−Emax, Emax]. The
instrument is accepted as conforming to the specified requirement if it meets the following criteria:

(a) in measuring a calibrated standard, the best estimate e of the instrument error of indication E satisfies

|e| ≤ Emax, and

(b) the expanded uncertainty for a coverage factor k = 2 associated with the estimate e satisfies

U ≤ Umax = Emax/3.

In terms of the measurement capability index, criterion (b) is equivalent to the requirement that Cm ≥ 3 (see clause 7.6).

8.2.4 Another practical acceptance decision rule follows from what is referred to as the “accuracy method” de-
scribed in IEC Guide 115 [19]. In this approach, a well-characterised test method is used and sources of uncertainty are
minimised by (a) use of measuring instruments with maximum permissible errors within specified limits, (b) environ-
mental influences, such as temperature and relative humidity, maintained within specified limits, (c) well-documented
control of laboratory procedures, and (d) well-documented competency of measurement personnel.

8.2.5 By controlling sources of variability within prescribed limits, the measurement uncertainty associated with
a best estimate of a measurand is assumed to be negligible, is not explicitly evaluated, and plays no role in an
accept/reject decision. The approach of IEC Guide 115 Procedure 2 (the “accuracy method”) formalizes the cur-
rent practice of electrotechnical testing laboratories in using state-of-the-art measuring equipment and routine, well
established test methods.

8.2.6 Depending upon the relative width of the tolerance interval and the coverage interval, a simple acceptance
decision rule, or similar decision rule, can often support the quality objectives of measurements and calibrations carried
out in support of conformity assessments.

8.3 Decision rules based on guard bands

8.3.1 General considerations

8.3.1.1 Accepting or rejecting an item when the measured value of its property of interest is close to a tolerance
limit may result in an incorrect decision and lead to undesirable consequences. Such incorrect decisions are generally
of two kinds in the case of a single upper tolerance limit [illustrated in figure 8, outcomes (b) and (c)].

8.3.1.2 With a decision rule based on simple acceptance and the common case of a symmetric unimodal PDF
(such as a normal distribution) for the measurand, the probability of accepting a non-conforming item [figure 8, (b)]
or rejecting a conforming item [figure 8, (c)] can be as large as 50 %. This would happen, for example, if the measured
value of a property lay very close to the tolerance limit. In such a case about 50 % of the PDF for the measurand
would lie on either side of the limit, so that whether the item is accepted or rejected, there would be a 50 % chance
of an incorrect decision.

8.3.1.3 Either of these probabilities can be reduced, at the cost of increasing the other, by choosing acceptance limits
offset from the tolerance limits, a conformity decision strategy called guardbanding; see references [6, 7, 8, 9, 12, 17, 44].
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V a l i d  a c c e p t a n c e
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Figure 8 – Simple acceptance decision rule near an upper tolerance limit TU, with four 95 % coverage
intervals. For such a decision rule, the acceptance limit AU coincides with the tolerance limit. Decisions

to accept or reject inspected items are based on measured values (triangles); the true values (circles)
cannot be known. Cases (b) and (c) lead to incorrect decisions called false acceptance and false rejection,
respectively (see clause 9.3.2). In case (c) the true value of the measurand lies (unknowingly) outside the

95 % coverage interval.

8.3.2 Guarded acceptance

8.3.2.1 The risk of accepting a non-conforming item can be reduced by setting an acceptance limit AU inside the
tolerance interval, as shown in figure 9. The interval defined by TU and AU is called a guard band (see 3.3.11), and
the resulting decision rule is called guarded acceptance.

NOTE Guarded acceptance is also known as stringent acceptance [2] and positive compliance for acceptance [18].

 0w >

T U

G u a r d  b a n dA c c e p t a n c e  i n t e r v a l

A U

Figure 9 – Decision rule based on guarded acceptance. An upper acceptance limit AU inside an upper
tolerance limit TU defines an acceptance interval that reduces the probability of falsely accepting a

non-conforming item (consumer’s risk). By convention, the length parameter w associated with a guarded
acceptance guard band is taken to be positive: w = TU −AU > 0.

8.3.2.2 The difference between a tolerance limit and a corresponding acceptance limit defines a length parameter
w for a guard band, viz.

w = TU −AU.

For a guarded acceptance decision rule, w > 0.

8.3.2.3 In many applications, the length parameter w is taken to be a multiple of the expanded uncertainty for a
coverage factor k = 2, U = 2u, viz.

w = rU,
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with the multiplier r chosen to assure a minimum conformance probability for an item that is accepted. A common
choice is r = 1, in which case w = U .

EXAMPLE ISO 14253-1 [21] establishes a default guarded acceptance decision rule for demonstrating conformity with spec-
ification. Figure 10 is adapted from ISO 14253-1, figure 7. In the case of a two-sided tolerance interval, upper and lower
acceptance limits are offset from the corresponding tolerance limits by guard bands with length parameter w = U = 2u.

The aim of the guard bands, with w = 2u, is to ensure that for any measured value lying within the acceptance interval, the
probability of accepting a nonconforming item is at most 2.3 %, assuming a normal PDF for the measured quantity. This
maximum probability occurs if the measured value of the property coincides with an acceptance limit. For measured values
away from the acceptance limits, the probability of a false acceptance will be less than the maximum.

 2U u= 2U u=

A U

T UT L

A L
T o l e r a n c e  i n t e r v a l

A c c e p t a n c e  i n t e r v a l

Figure 10 – Two-sided acceptance interval created by reducing the tolerance interval on either side by
the k = 2 expanded uncertainty U = 2u. This is the default decision rule established in ISO 14253-1 [21].

In ISO 14253-1, an acceptance interval is called a conformance zone, and a tolerance interval is called a specification zone. The
labels in figure 10 follow the conventions of this document.

8.3.3 Guarded rejection

8.3.3.1 An acceptance limit outside a tolerance interval, as shown in figure 11, can be chosen so as to increase
the probability that a rejected item is truly non-conforming. Such a guarded rejection decision rule is often employed
when one wants clear evidence that a limit has been exceeded prior to taking a negative action.

NOTE Guarded rejection is also known as stringent rejection [2] and positive non-compliance for rejection [18].

8.3.3.2 The length parameter w for a guarded rejection guard band is w = TU −AU < 0.

 0w <

T U

G u a r d  b a n d
A c c e p t a n c e  i n t e r v a l

A U

Figure 11 – Decision rule based on guarded rejection. An upper acceptance limit AU outside an upper
tolerance limit TU defines an acceptance interval that reduces the probability of falsely rejecting a

conforming item (producer’s risk). The length parameter w associated with a guarded rejection guard
band is w = TU −AU < 0.

EXAMPLE 1 Speed limit enforcement

In highway law enforcement, the speed of motorists is measured by police using devices such as radars and laser guns [42]. A
decision to issue a speeding ticket, which may potentially lead to an appearance in court, must be made with a high degree of
confidence that the speed limit has actually been exceeded.
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Using a particular Doppler radar, speed measurements in the field can be performed with a relative standard uncertainty u(v)/v
of 2 % in the interval 50 km/h to 150 km/h. Knowledge of a measured speed v in this interval is assumed to be characterised
by a normal PDF with expectation v and standard deviation 0.02v.

Under these conditions one can ask, for a speed limit of v0 = 100 km/h, what threshold speed vmax (acceptance limit) should
be set so that for a measured speed v ≥ vmax the probability that v ≥ v0 is a least 99.9 %?

This mathematical problem is equivalent to the calculation of a conformance probability for a one-sided tolerance interval (see
clause 7.3). Here a value of z = (vmax − v0)/(0.02vmax) is needed for which 99.9 % of the probability lies in the region V ≥ v0.
From table 1 on page 15 it is seen that z = 3.09, so that

vmax =
v0

1− 0.02z
=

100

1− 0.02× 3.09
km/h ≈ 107 km/h.

The interval [100 km/h ≤ v ≤ 107 km/h] is a guard band that ensures a probability of at least 99.9 % that the speed limit has
been exceeded for a measured speed of 107 km/h or greater.

EXAMPLE 2 Drugs in live animals and animal products

The anabolic steroid nandrolone belongs to a group of substances banned as growth promoters in food-producing animals. The
substance occurs naturally in some live animals and consequently a threshold (tolerance) limit T equal to 2.00 µg/L has been
established.

In a screening test for nandrolone, a measured concentration exceeding the threshold value with a probability of 95 % or greater
is considered suspect and should be followed up by a confirmation procedure.

In performing a screening test, a laboratory wishes to set a decision (acceptance) limit A given by

A = T + g,

where g = |w| is a guard band (see figure 11), such that for a measured concentration value y ≥ A the probability that Y ≥ T
is at least 95 %.

The laboratory validates its measurement procedure by spiking ten blank samples at a concentration level close to the threshold.
The samples are measured under within-laboratory reproducibility conditions, yielding an observed reproducibility standard
deviation s (ISO 3534-2, 3.3.12) of 0.20 µg/L.

From the spiking experiment, the laboratory concludes that its measurements are free from significant systematic errors. The
measurement uncertainty is dominated by reproducibility effects and the PDF for nandrolone concentration Y is thus taken to
be a scaled and shifted t-distribution (see JCGM 101:2008 6.4.9) with ν = 9 degrees of freedom.

From a table or appropriate software for the t-distribution (one-sided, ν = 9 degrees of freedom, 95 % probability), the guard
band is calculated as

g = t0.95;9 × s = 1.83× 0.20 µg/L = 0.37 µg/L.

A sample with measured value y of nandrolone concentration greater than or equal to

A = (2.00 + 0.37) µg/L = 2.37 µg/L

is thus considered suspect.

9 Consumer’s and producer’s risks

9.1 General

9.1.1 In conformity assessment using a binary decision rule, a property of an item is measured and the item is
accepted as conforming if the measured value of the property lies in a defined acceptance interval. A measured value
outside the acceptance interval leads to rejection of the item as non-conforming. Figure 12, which reproduces figure 1
on page viii, illustrates the intervals of interest, showing a tolerance interval (of conforming values) and an acceptance
interval (of permissible measured values).
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9.1.2 The use of guard bands provides a way to limit the probability of making an incorrect conformance decision
based on measurement information as summarised by a coverage interval. The present clause is concerned with a more
precise evaluation of such probabilities for a production process. The evaluated probabilities depend on two factors,
the production process and the measuring system.

9.1.3 If the measuring system were perfectly accurate, all conformance decisions would be correct and all risks
would be zero. An increase in measurement uncertainty means an increase in the probability of an incorrect decision,
and the probability is greatest when measured values are close to the tolerance limits.

9.1.4 The risks also depend on the nature of the production process. If the process rarely produces an item whose
property of interest is near the tolerance limits, there is less opportunity for incorrect decisions to be made. Conversely,
if a process produces items with properties likely to be close to tolerance limits, the uncertainties associated with the
measurements are brought into play. The remainder of this clause shows how the contributions of both factors can be
evaluated.

T UA UT L A L

A c c e p t a n c e  i n t e r v a l

T o l e r a n c e  i n t e r v a l

Figure 12 – Binary conformity assessment where decisions are based on measured quantity values. The
true value of a measurable property (the measurand) of an item is specified to lie in a tolerance interval

defined by limits (TL, TU). The item is accepted as conforming if the measured value of the property lies in
an acceptance interval defined by limits (AL, AU), and rejected as non-conforming otherwise.

9.2 PDFs for production process and measuring system

9.2.1 Consider a process that produces a sequence of items, each having a measurable property Y with possible
values η. The process might be a machine producing resistors of nominal resistance 10 kΩ or a sampling process
yielding vials of ocean water containing dissolved mercury. For an item chosen at random from the process, knowledge
of property Y before it is measured is conveyed by a prior PDF g

0
(η). The PDF g

0
(η) can be said to characterize the

production process, and is sometimes called the process probability density. The form of g
0
(η) is typically assigned

based on knowledge acquired by measuring the property of interest in a sample of produced items.

NOTE Assigning a prior PDF based on a measured sample of items is discussed in Annex B.

9.2.2 Conformity assessment of a produced item is realized by a measurement of the property of interest. The
output of the measuring system is a quantity regarded as an observable random variable Ym whose possible values ηm,
assuming a known input value Y = η, are encoded and conveyed by a PDF h (ηm|η). The form of h (ηm|η) is assigned
based on the design of the measuring system, information supplied by calibrations and knowledge of relevant influence
quantities such as environmental parameters and material properties.

9.3 Possible outcomes of an inspection measurement with a binary decision rule

9.3.1 Let C and C̃ denote, respectively, intervals of conforming and non-conforming values of Y, and let A and Ã
denote, respectively, intervals of acceptable and non-acceptable values of Ym. In figure 12, for example, C corresponds
to values of Y in the interval TL ≤ Y ≤ TU, and A corresponds to values of Ym in the interval AL ≤ Ym ≤ AU.
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9.3.2 With a binary decision rule there are four possible outcomes of a conformity assessment test that yields a
measured quantity value ηm:

Valid acceptance: the item is accepted (Ym = ηm ∈ A) and conforms with specification (Y ∈ C).
This is a desired outcome of the conformity assessment test, leading to acceptance of a conforming
item.

False acceptance: the item is accepted (Ym = ηm ∈ A) but does not conform with specification
(Y ∈ C̃). This is an incorrect decision whose probability is called consumer’s risk, because the cost
associated with such a mistake is often borne by a consumer, or user, who accepts the item as fit for
its purpose and acts accordingly.

NOTE False acceptance is also known as a pass error or a false positive.

For a particular measured item accepted as conforming, given a measured value Ym = ηm ∈ A, the
probability of false acceptance is called the specific consumer’s risk (see 3.3.13) [38], denoted by R∗C.
From the definition (4) of conformance probability it can be seen that R∗C is given by

R∗C = 1− pc,

for a measured value ηm in the acceptance interval. For an item chosen at random from the production
process, the probability that it will be falsely accepted following a measurement is called the global
consumer’s risk (see 3.3.15) [38], denoted by RC. Calculation of RC is considered in clause 9.5.

Valid rejection: the item is rejected (Ym = ηm ∈ Ã) and does not conform with specification (Y ∈ C̃).
This is a desired outcome of the conformity assessment test, leading to rejection of a non-conforming
item.

False rejection: the item is rejected (Ym = ηm ∈ Ã) but actually conforms with specification
(Y ∈ C). This is another incorrect decision whose probability is called producer’s risk, because the
cost associated with such a mistake is often borne by a producer who cannot sell an item that has
failed a test of conformity.

NOTE False rejection is also known as a fail error or a false negative.

For a particular measured item rejected as non-conforming, given a measured value Ym = ηm ∈ Ã, the
probability of false rejection is called the specific producer’s risk (see 3.3.14) [38], denoted by R∗P.
From the definition (4) of conformance probability it can be seen that R∗P is given by

R∗P = pc,

for a measured value ηm outside the acceptance interval. For an item chosen at random from the
production process, the probability that it will be falsely rejected following a measurement is called
the global producer’s risk (see 3.3.16) [38], denoted RP. Calculation of RP is considered in clause 9.5.

9.4 The joint PDF for Y and Ym

9.4.1 As seen in clause 9.3.2, the specific consumer’s risk and specific producer’s risk R∗C and R∗P are simply related
to the conformance probability for a particular measured item, given the result of a measurement. If the value of
the property Y is outside the tolerance interval and a measured value Ym is within the acceptance interval, then a
consumer’s risk has been realised. The probability that these two events occur, i.e., the global consumer’s risk, is
specified by a joint probability distribution that depends on the production process and the measuring system.

9.4.2 The joint probability density can be written as a product of densities that are already known. In words, the
probability that the value of the measurand Y is outside the tolerance interval and measured value Ym is within the
acceptance interval is given by the probability that the production process produces an item with a true value of Y
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outside the tolerance interval multiplied by the probability that the measuring system produces a measured value Ym
within the acceptance interval, given that the measurand Y is outside the tolerance interval.

9.4.3 Similarly, the global producer’s risk is defined in terms of the same joint probability distribution. If the
tolerance interval, the production process and the measuring system are regarded as fixed, the global consumer’s risk
and global producer’s risk are determined by the acceptance limits. The acceptance limits can thus be set to achieve
an acceptable balance of the two kinds of risk. In general it is not possible to set the acceptance limits to minimise
both the consumer’s and producer’s risks simultaneously: decreasing one will increase the other.

9.4.4 In the quality control and conformity assessment literature, the terms ‘consumer’s risk’ and ‘producer’s risk’
are generally used in the sense of global risks, as described above.

9.4.5 For a given production process and measuring system, knowledge of the possible outcomes of a conformity
assessment test of an item selected at random is described by a joint probability density function. For such a randomly
selected item, the probability that (a) the value of the measurand Y lies in the interval η ≤ Y ≤ η + dη and that (b)
a measurement of Y would yield a measured value Ym in the interval ηm ≤ Ym ≤ ηm + dηm is given by

Pr (η ≤ Y ≤ η + dη and ηm ≤ Ym ≤ ηm + dηm) = f(η, ηm)dη dηm, (15)

where f(η, ηm) is the joint PDF for Y and Ym.

9.4.6 Using the product (or multiplication) rule of probability theory, the joint density f(η, ηm) can be factorized
in two ways, according to

f(η, ηm) = g
0
(η)h (ηm|η) (16a)

and

f(η, ηm) = h
0
(ηm) g (η|ηm) . (16b)

9.4.7 The two PDFs on the right in expression (16a) are the two probability densities described in clause 9.2. Given
the forms of these PDFs, the two probability densities on the right-hand side of expression (16b) can be calculated, if
desired. Such a calculation is illustrated in Annex A (see clauses A.4.3 and A.4.4).

9.5 Calculation of global risks

9.5.1 Historical context

9.5.1.1 In the following subclauses, formulae are developed for calculating the global risks of incorrect decisions.
Such calculations have traditionally been performed using measured frequency distributions of the various outcomes
when a large sample of nominally identical items are measured. The global consumer’s risk, in such an approach, is
equal to the fraction of items in a measured sample that are accepted for use but do not conform with a specified
requirement. Such non-conformance, for a particular item, has to be demonstrated after the fact by a separate
measurement with an uncertainty much smaller than that of the measuring system used in the conformity assessment.

9.5.1.2 The global risks below are calculated using probability distributions rather than frequency distributions,
so that it is not necessary to consider an ensemble of measured items that may not, in fact, exist. Numerically,
the calculated probabilities will always agree, on average, with measured frequencies. Thus acceptance limits can be
chosen to yield acceptable fractions of mistakenly accepted or rejected items, on average, in the conformity assessment
of items in a sample.

9.5.2 General formulae

9.5.2.1 Given the joint PDF (16a) and the two probability densities g0(η) and h (ηm|η), the probabilities of each
of the four possible outcomes described above (see clause 9.3) can be calculated. These probabilities are simply the
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respective volumes under the joint probability density f(η, ηm), integrated over the four regions that describe all
possible outcomes.

9.5.2.2 Of particular interest are the global consumer’s risk and global producer’s risk, calculated as follows:

— For a measured value in the acceptance interval and a value of Y outside the tolerance interval, the global
consumer’s risk is

RC =

∫
C̃

∫
A
g
0
(η)h (ηm|η) dηmdη. (17)

— For a measured value outside the acceptance interval and a value of Y within the tolerance interval, the global
producer’s risk is

RP =

∫
C

∫
Ã
g0(η)h (ηm|η) dηmdη. (18)

9.5.2.3 Expressions (17) and (18) are general formulae for the calculation of global consumer’s and producer’s
risks. Depending on the particular form of the PDFs g

0
(η) and h (ηm|η), explicit evaluation of RC and RP may have

to be performed numerically.

9.5.3 Special case: Binary decision rule

9.5.3.1 For the particular binary conformity assessment illustrated in figure 12, formulae (17) and (18) become

RC =

(∫ TL

−∞
+

∫ ∞
TU

)∫ AU

AL

g0(η)h (ηm|η) dηm dη, (19)

and

RP =

(∫ AL

−∞
+

∫ ∞
AU

)∫ TU

TL

g
0
(η)h (ηm|η) dη dηm. (20)

9.5.3.2 Use of expressions (19) and (20) in the case where the joint PDF (15) is a product of normal distribu-
tions is illustrated in the following example. Properties of normal distributions, including the particular forms of
expressions (19) and (20), are discussed in Annex A.

EXAMPLE Manufacture of precision resistors

A supplier of electrical components produces wire-wound precision resistors of nominal resistance 1 500 Ω. For each resistor (the
item), the resistance Y (the property of interest) is specified to lie in a tolerance interval defined by the limits TL = 1 499.8 Ω
and TU = 1 500.2 Ω.

A machine for producing such resistors is evaluated by measuring a sample of its output, using a high-accuracy ohmmeter with
negligible measurement uncertainty. A histogram of the measured values appears normal in shape, centred on the nominal value
with a standard deviation σ = 0.12 Ω. Based on this information, a normal PDF g0(η) = ϕ

(
η; y0, u

2
0

)
is assigned to model the

production process, with y0 = 1 500 Ω and u0 = σ = 0.12 Ω.

For a typical resistor produced by this machine, the conformance probability is

pc =

∫ TU

TL

g0(η) dη =

∫ 1 500.2

1 499.8

ϕ
(
η; 1 500, 0.122

)
dη ≈ 0.90 = 90 %. (21)

If the supplier simply shipped every resistor produced, about 10 % of them would be non-conforming, which for economic
reasons is judged to be unacceptable. By purchasing a more expensive production machine the process variability could be
reduced. In this case it is decided, considering the relative costs, to keep the existing machine and implement an inspection
process to detect and remove non-conforming resistors.

© JCGM 2012— All rights reserved 27



JCGM 106:2012

In production, the resistors are inspected for conformity with specification using a calibrated high-speed ohmmeter. A normal
PDF h (ηm|η) = ϕ

(
ηm; η, u2

m

)
, with um = 0.04 Ω, is assigned to encode and convey belief in the interval of measured values that

might be observed when measuring a known resistance Y = η. The assignment is based on a model of the measuring system
and an evaluation of the measurement uncertainty, including the uncertainty associated with the ohmmeter calibration.

In order to reduce the probability of shipping resistors that do not meet specification (the consumer’s risk), acceptance limits
AL = 1 499.82 Ω, AU = 1 500.18 Ω are chosen inside the tolerance interval(see figure 12, page 24), creating a guarded acceptance
interval with symmetric guard bands of length

w = (1 500.2− 1 500.18) Ω = 0.02 Ω = 0.25U.

The consumer’s and producer’s risks are then calculated from expressions (A.15)–(A.17) with

ϕ0(z) = (1/
√

2π) exp (−z2/2)

and

F (z) = Φ
(
AU − y0 − u0z

um

)
− Φ

(
AL − y0 − u0z

um

)
= Φ(4.5− 3z)− Φ(−4.5− 3z).

Numerical integration yields

RC =

∫ −1.667

−∞
F (z)ϕ0(z) dz +

∫ ∞
1.667

F (z)ϕ0(z) dz = 0.01 = 1 %,

and

RP =

∫ 1.667

−1.667

[1− F (z)]ϕ0(z) dz = 0.07 = 7 %.

Interesting features of this conformity assessment procedure can be noted by considering an average sample of 100 resistors
produced by the machine, measured, and accepted or rejected as suitable for use:

— given the properties of the production process, 90 of the resistors conform with specification and 10 do not conform (see
expression (21));

— of the 90 conforming resistors, 83 are accepted and 7 falsely rejected as non-conforming;

— of the 10 non-conforming resistors, 9 are rejected and one falsely accepted as conforming;

— 84 of the resistors are accepted; of these, 83/84 ≈ 99 % conform, with about 1 % out of tolerance. This is the goal of
the inspection measurement, reducing the proportion of non-conforming resistors, among those accepted for use, from 10 %
to 1 %;

— of the 16 resistors that are rejected, 7/16 ≈ 44 % actually conform with specification. This is a price to be paid for reducing
the risk of accepting non-conforming products.

9.5.4 Setting acceptance limits

9.5.4.1 In the example above, the global risks RC and RP were calculated given known acceptance limits AL and
AU. In most real applications, a desired level of risk is chosen based on a cost analysis and acceptance limits are
calculated so as to ensure that the desired risk level is achieved. Such calculations are not straightforward. A practical
approach to such problems is via graphical solution, as illustrated in the following example.

EXAMPLE Ball bearing production

A manufacturer produces large numbers of precision ball bearings. The performance specification for these bearings (the items)
requires that, for each of them, the radial error motion (the property of interest) be less than 2 µm. Radial error motion of a
bearing is undesired motion perpendicular to the axis of rotation. For a perfect bearing, the radial error motion would be zero;
any real bearing will have a positive radial error motion.
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In order to characterize the production process, the radial error motions of a large sample of bearings are measured, using
a high-accuracy test apparatus with negligible measurement uncertainty. For this sample, the average observed radial error
motion is y = 1 µm, with an associated sample standard deviation s = 0.5 µm.

Prior to shipment, bearings are tested for conformity with specification. In these tests the radial error motion is measured using
a calibrated test apparatus. The measuring system is characterized by a normal PDF ϕ

(
ηm; η, u2

m

)
with a standard uncertainty

of um = 0.25 µm.

For economic reasons, the fraction of non-conforming bearings sold to customers as conforming (the global consumer’s risk)
must be held to 0.1 % or less. How can an acceptance limit A be chosen to satisfy this requirement?

 
m2

w r U
r u

=
=

 t o l e r a n c e  i n t e r v a l

 a c c e p t a n c e  i n t e r v a l

 g u a r d  b a n d

 �0 A T

Figure 13 – Tolerance and acceptance intervals for the conformity assessment of ball bearings.
Permissible values of radial error motion Y lie in the interval 0 ≤ η ≤ T . The acceptance limit A is

separated from the tolerance limit T by a guard band with length parameter w = rU = 2rum. The decision
rule in this case is guarded acceptance, with w > 0.

The conformity assessment problem is illustrated in figure 13. A conforming ball bearing is specified to have a radial error
motion Y in the interval 0 ≤ η ≤ T . Since the radial error motion is always positive, with measured values close to zero,
the prior PDF for the radial error Y will be modelled by a gamma probability density (see Annex B, clause B.3). Based on
the sample measurements, the expectation and standard uncertainty of the prior PDF are assigned to be y0 = y = 1 µm and
u0 = s = 0.5 µm. Using expressions (B.14), the parameters α and λ are calculated:

α =
12

(0.5)2
= 4, λ =

1

(0.5)2
= 4.

From definition (B.11) of the gamma probability density, the prior PDF for bearing radial error Y is then

g0(η) = gamma (η; 4, 4) =
128

3
η3e−4η, η ≥ 0. (22)
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Figure 14 – Gamma prior PDF given by expression (22), assigned based on the frequency distribution of
measured radial error motions for a sample of ball bearings. The tolerance interval is the region

0 ≤ η ≤ 2 µm. The expectation of the distribution is the prior estimate y0 = 1 µm, with an associated
standard uncertainty u0 = 0.5 µm. Because the distribution is not symmetric, the most probable value of Y

(the mode of the distribution, here equal to 0.75 µm) is not equal to y0.

This PDF is shown in figure 14. The probability that a ball bearing chosen at random from the production process would
display a radial error motion greater than 2 µm is indicated by the cross-hatched region. This non-conformance probability is

pc =

∫ ∞
2

gamma (η; 4, 4) dη = 0.042,

which means that if all ball bearings produced were shipped without being measured, about 4.2 % of them would be non-
conforming. The post-process measuring system is designed to detect non-conforming bearings so that they will not be shipped.
An acceptance limit is desired to reduce the consumer’s risk RC to 0.1 % or less. For the conformity assessment decision rule
shown in figure 13, the tolerance interval corresponds to 0 ≤ Y ≤ T and the acceptance interval to 0 ≤ Ym ≤ A. In a manner
analogous to the steps leading to expressions (19) and (20), the global consumer’s and producer’s risks are evaluated as

RC =

∫ ∞
T

∫ A

0

g0(η)h (ηm|η) dηm dη, RP =

∫ T

0

∫ ∞
A

g0(η)h (ηm|η) dηm dη.

For a measuring system characterized by a normal PDF h (ηm|η) = ϕ
(
ηm; η, u2

m

)
, making the substitutions

z = (ηm − η)/um, dz = dηm/um, and performing the integrations over z, these expressions become

RC =

∫ ∞
T

[
Φ
(
A− η
um

)
− Φ

(
− η

um

)]
g0(η) dη, RP =

∫ T

0

[
1− Φ

(
A− η
um

)]
g0(η) dη.

From figure 13 it can be seen that A = T − 2rum. Here T = 2 µm and um = 0.25 µm. Then setting g0(η) equal to the gamma
PDF of expression (22) yields the explicit results

RC(r) =
128

3

∫ ∞
2

[Φ (8− 2r − 4η)− Φ(−4η)] η3e−4η dη, (23)

RP(r) =
128

3

∫ 2

0

[1− Φ (8− 2r − 4η)] η3e−4η dη. (24)
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Figure 15 – Global consumer’s risk RC versus guard band multiplier r. For r ≈ 0.65, the acceptance limit
is A = T − 2(0.65)um = 1.7 µm, and the desired risk RC = 0.1 % is achieved.

These integrals cannot be evaluated in closed form, but they can be calculated numerically for any chosen values of the guard
band multiplier r.

Figure 15 shows the global consumer’s risk RC for −1 ≤ r ≤ 1. Positive r corresponds to A < T (guarded acceptance) and
negative r corresponds to A > T. For r = 0 there is no guard band (A = T ), a decision rule called shared risk or simple
acceptance (see clause 8.2). The figure shows that the desired level of risk, RC = 0.1 %, is achieved for a guard band multiplier
r ≈ 0.65. This results in a guarded acceptance interval with acceptance limit

A = T − 2rum = (2− 2× 0.65× 0.25) µm ≈ 1.7 µm.

This choice of acceptance limit solves the decision problem.

In conformity assessment with a binary decision rule, acting to reduce the consumer’s risk will always increase the producer’s
risk. This general rule is well illustrated by figure 16 which shows RP versus RC, calculated numerically from formulae (23)
and (24), for the ball bearing example. For r = 0.65, the global producer’s risk RP is about 7.5 %. This means that about 75
of every 1000 ball bearings that fail inspection would actually conform with specification, resulting in the loss of revenue that
would accrue if these good bearings were sold.

The generation of an increasing amount of conforming scrap is a cost of guarded acceptance, which seeks to reduce the acceptance
and shipment of non-conforming products. In practice a supplier must choose an operating point along a curve such as that
shown in figure 16 that will balance the risks and yield an optimal outcome. The choice of such an operating point is a business
or policy decision that requires an economic analysis of the decision problem.
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Figure 16 – Global risks RP versus RC for the ball bearing example. Any point on the curve corresponds
to a particular value of r, the guard band multiplier, with several particular values identified. Acting to

reduce consumer’s risk by moving the acceptance limit farther inside the tolerance interval (increasing r)
always increases the risk of falsely rejecting conforming bearings. An economic analysis is required to
choose an optimal decision rule. The open circle marks the operating point in the worked example.

9.5.5 General graphical approach

9.5.5.1 For a process with given tolerance T , normal prior PDF g
0
(η) = ϕ

(
η; y0, u

2
0

)
and normal measuring system

PDF h (ηm|η) = ϕ
(
ηm; η, u2m

)
, a graph such as that shown in figure 17 can be created to aid in setting acceptance

limits.

9.5.5.2 In this example it is assumed that prior information is meagre in the sense that u2m � u20, so that the
estimate y ≈ ηm with associated standard uncertainty u ≈ um (see clause A.4.4.3).

9.5.5.3 The figure shows RP versus RC for the particular case where u0 = T/6.

9.5.5.4 The five curves in the figure correspond to values of the measurement capability index Cm = T/(4um)
in a range from 2 to 10, and along each curve solid points locate guard bands with various length parameters, from
w = −U to w = U , with the expanded uncertainty U equal to 2u.

9.5.5.5 To use this particular graph it would be necessary to note that

— the process is assumed to be centred, so that the prior estimate y0 of the measurand lies at the midpoint of the
tolerance interval;

— the upper and lower guard bands are assumed to have length parameters that are equal in absolute value (a
symmetric acceptance interval);

— RP and RC are calculated assuming normal process and measuring system PDFs;

— for measurement capabilities other than the five values shown, interpolation is possible;

— it is also possible to interpolate along the curves to estimate the guard bands.
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Figure 17 – Global risks RP versus RC for a binary conformity assessment with prior standard
uncertainty u0 = T/6. The five curves correspond to values of the measurement capability index

Cm = T/(4um) in an interval from 2 to 10. The solid points locate guard bands with length parameters
from w = −U to w = U , with U = 2u. Positive values of w correspond to guarded acceptance, with

acceptance limits inside the tolerance limits as in figure 12 on page 24.

9.5.6 The value of reduced measurement uncertainty

9.5.6.1 Reducing the uncertainty associated with the result a of conformity assessment measurement will also
reduce the probability of making an incorrect accept/reject decision. This observation is well illustrated in figure 17
by the dotted lines that mark the loci of the various guard bands.

9.5.6.2 For a simple acceptance decision rule (w = 0) it is seen, for example, that if the measurement uncertainty
were such that Cm = T/(4um) = 2, then the consumer’s risk would be RC ≈ 0.1 % and the corresponding producer’s
risk would be RP ≈ 1.5 %.

9.5.6.3 Investing in an improved measuring system with Cm = 10 would reduce these risks to RC ≈ 0.04 % and
RP ≈ 0.07 % respectively. Whether such a reduction in measurement uncertainty would be economically desirable
depends on the tradeoff between the cost of the improved metrology and the money saved via fewer decision mistakes.

9.5.6.4 Improving the production process (reducing the prior standard uncertainty u0) will have a similar effect in
reducing both consumer’s and producer’s risks, and will involve a similar kind of cost/benefit analysis.
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Annex A
(informative)

Normal distributions

A.1 Normal probability density function

A.1.1 Assume that a quantity of interest Y is measured, yielding a best estimate y and an associated standard
uncertainty u(y) = u. In many cases the dispersion of probable values η of Y about the estimate y, given a measured
value ηm, is well characterized by a normal probability density function (PDF), given by

g (η|ηm) =
1

u
√

2π
exp

[
−1

2

(
η − y
u

)2
]

=: ϕ(η; y, u2), (A.1)

where y = y(ηm). In many conformity assessment measurements, y ≈ ηm, but this is not always the case; see
clause A.4.4.

A.2 Integrals of normal PDFs

A.2.1 In computing coverage probabilities, conformance probabilities and/or consumer’s and producer’s risks, one
often has to evaluate integrals of normal PDFs between finite or semi-infinite limits. Such integrals cannot be evaluated
in closed form and are therefore evaluated numerically and tabulated. In order to simplify the notation it is convenient
to introduce the standard normal PDF, ϕ0(t), defined by

ϕ0(t) =
1√
2π

exp(−t2/2) = ϕ(t; 0, 1). (A.2)

A.2.2 There are two common ways that one finds integrals of normal PDFs expressed:

(a) the standard normal distribution function, Φ(t), defined by

Φ(z) =
1√
2π

∫ z

−∞
exp(−t2/2) dt =

∫ z

−∞
ϕ0(t) dt, (A.3)

and

(b) the error function, erf(z), defined by

erf(z) =
2√
π

∫ z

0

exp(−t2) dt. (A.4)

These functions are simply related; from definitions (A.3) and (A.4) it is seen that

Φ(z) =
1

2

[
1 + erf(z/

√
2)
]
. (A.5)

A.2.3 Consider the probability that the Y lies in the interval a ≤ Y ≤ b, given a measured value ηm. For the
normal PDF of expression (A.1) this probability is given by

Pr(a ≤ Y ≤ b|ηm) =
1

u
√

2π

∫ b

a

exp

[
−1

2

(
η − y
u

)2
]

dη.

Setting z = (η − y)/u and dz = dη/u, this expression becomes

Pr(a ≤ Y ≤ b|ηm) =

∫ (b−y)/u

(a−y)/u
ϕ0(z)dz = Φ

(
b− y
u

)
− Φ

(
a− y
u

)
, (A.6)

34 © JCGM 2012— All rights reserved



JCGM 106:2012

using expressions (A.2) and (A.3).

A.3 Coverage probabilities for normal PDFs

A.3.1 In a common special case, points a and b define a coverage interval (or uncertainty interval) of width 2U
about the estimate y, where U = ku is the expanded uncertainty for a stated coverage factor k (see clause 6.3.2).
Then a = y − ku, b = y + ku and expression (A.6) becomes

Pr(|Y − y| ≤ ku|ηm) = Φ(k)− Φ(−k) = erf(k/
√

2) = P (k).

The coverage probabilities (or levels of confidence) for k = 1, 2, and 3 are then:

P (1) = Φ(1)− Φ(−1) = erf(1/
√

2) = 0.683 = 68.3 %,

P (2) = Φ(2)− Φ(−2) = erf(2/
√

2) = 0.955 = 95.5 %,

P (3) = Φ(3)− Φ(−3) = erf(3/
√

2) = 0.997 = 99.7 %.

A.4 Normal process and measurement probability densities

A.4.1 Prior PDF g
0
(η) for the measurand Y

A.4.1.1 Before performing a measurement, knowledge of a measurand Y is often well characterized by a normal
prior PDF. Denoting the best estimate by y0 and the associated standard uncertainty by u0, this prior PDF is given
by

g
0
(η) = ϕ

(
η; y0, u

2
0

)
=

1

u0
√

2π
exp

[
−1

2

(
η − y0
u0

)2
]

=

√
w0

2π
exp

[
−w0

2
(η − y0)

2
]
. (A.7)

In the last expression a weight w0 = 1/u20 has been introduced to simplify the subsequent development.

A.4.2 PDF h (ηm|η) for Ym, given a value Y = η

A.4.2.1 Assume that the measuring system used in a conformity assessment is characterised, via the likelihood
function, by a normal PDF. If such a system is used to measure a property of interest with an assumed value Y = η
the PDF conveying belief in the possible values of Ym is then given by

h (ηm|η) = ϕ
(
ηm; η, u2m

)
=

1

um
√

2π
exp

[
−1

2

(
ηm − η
um

)2
]

=

√
wm

2π
exp

[
−wm

2
(ηm − η)

2
]
, (A.8)

where wm = 1/u2m.

A.4.2.2 The normal PDF of expression (A.8) reasonably characterizes a measurement analyzed according to the
procedure described in the GUM, in the case where the conditions necessary for the validity of the central limit theorem
exist. The GUM assumes no prior knowledge of the measurand, so that the dispersion of values that could reasonably
be attributed to a measurand following a measurement is characterized by the standard uncertainty um.

A.4.3 Marginal PDF h0(ηm) for Ym

A.4.3.1 It is of interest to ask, and of practical value to know, what measured value ηm might be realized if an item
were chosen at random from a production process and the property of interest Y measured. For a process characterized
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by the prior PDF of expression (A.7) and measuring system characterized by the PDF of expression (A.8), the desired
PDF can be calculated as a marginal probability density, using expression (16a), as follows:

h0(ηm) =

∫ ∞
−∞

g0(η)h (ηm|η) dη

=

√
w0wm

2π

∫ ∞
−∞

exp

[
−1

2

(
w0 (η − y0)

2
+ wm (ηm − η)

2
)]

dη

=
1√
2π

√
w0wm

w0 + wm
exp

[
−1

2

w0wm

w0 + wm
(ηm − y0)

2

]
=

1

uηm
√

2π
exp

[
−1

2

(
ηm − y0
uηm

)2
]

(A.9)

= ϕ
(
ηm; y0, u

2
ηm

)
,

where

uηm =

√
w0 + wm

w0wm
=
√
u20 + u2m. (A.10)

A.4.3.2 The PDF h
0
(ηm) is seen to be a normal distribution with expectation y0 and associated standard uncer-

tainty uηm given by expression (A.10).

A.4.3.3 The expectation E(Ym) = y0 follows from the assumption that the measuring system has been corrected
for all recognized significant systematic errors and is thus free from bias.

A.4.3.4 The standard uncertainty uηm in expression (A.10) is seen to be the quadrature sum of the standard
uncertainties associated with the process and measuring system PDFs. The two sources of uncertainty (an uncertain
process and an imperfect measuring system) combine in a natural way in their effects on knowledge of possible
measured values of a property of interest. Given a high-accuracy measuring system, in the sense that um � u0, then
uηm ≈ u0 and uncertainty about possible measured quantity values is almost all due to incomplete information about
the production process.

A.4.4 Posterior (post-measurement) PDF g (η|ηm) for Y

A.4.4.1 Equating the right-hand sides of expressions (16a) and (16b), on page 26, and rearranging yields the PDF
for the measurand Y following a measurement that yields a measured value ηm:

g (η|ηm) =
g
0
(η)h (ηm|η)

h
0
(ηm)

. (A.11)

Comparison with expression (1) on page 11 shows this result to be a statement of Bayes’ theorem, with the denominator
h

0
(ηm) given by expression (A.9). Substituting the normal PDFs of expressions (A.7)–(A.9) into expression (A.11)

yields

g (η|ηm) =

√
w0 + wm

2π
exp

[
−w0 + wm

2

(
η − w0y0 + wmηm

w0 + wm

)2
]

=
1

u
√

2π
exp

[
−1

2

(
η − y
u

)2
]

(A.12)

= ϕ
(
η; y, u2

)
,

where

y =
w0y0 + wmηm
w0 + wm

, (A.13)
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and

u =
1√

w0 + wm
=

1√
1
u2
0

+ 1
u2
m

=
u0um√
u20 + u2m

. (A.14)

A.4.4.2 Bayes’ theorem shows the effect of new information about the measurand Y conveyed by the measured
value ηm and the associated standard uncertainty um. The posterior probability density (A.12) is seen to be a normal
distribution whose expectation (best estimate) y, expression (A.13), is a weighted average of y0 and ηm, with the
weights equal to the reciprocals of the corresponding associated variances.

A.4.4.3 From expression (A.14) it is seen that the standard uncertainty u associated with the estimate y is always
less than both u0 and um. There are two cases of special interest that are commonly encountered in practice.

— If prior knowledge is so meagre that no attempt is made to assign an explicit prior PDF to the measurand Y ,
then um � u0 so that wm � w0. From expression (A.14) it follows that

y ≈ ηm, u ≈ um,

and all relevant knowledge of the possible values of Y can be said to derive from the measurement itself. Such mea-
surements are the focus of the GUM, which is a guide to the evaluation of um given an appropriate measurement
model.

— In a typical calibration, a measuring instrument is used to measure a reference standard that realizes an estimate y0
of a quantity Y with a small associated standard uncertainty u0. For such a calibration, the systematic error of
the instrument is poorly known a priori in the sense that u0 � um, or w0 � wm. The posterior PDF for Y is
then such that, again using expression (A.14),

y ≈ y0, u ≈ u0.

In accord with common sense, knowledge of the reference standard is unchanged by the calibration measurement.
The instrument reading, however, conveys information about the error of indication of the instrument, which is
the quantity of interest in a calibration.

A.5 Risk calculations with normal PDFs and a binary decision rule

A.5.1 General formulæ for the calculation of global consumer’s and producer’s risks were derived in clause 9.5, and
the special case of a conformity assessment with a binary decision rule was treated in clause 9.5.3. It is of interest
to derive expressions for the global risks in the common case of a binary decision rule where prior knowledge of a
measurand and the possible outputs of a measuring system are both described by normal distributions.

A.5.2 Given normal distributions, expressions (A.7) and (A.8), for the PDFs characterizing the production process
and the measuring system, the joint PDF f(η, ηm), (expression (16a) on page 26), for the outcome of a measurement
is

f(η, ηm) = g
0
(η)h (ηm|η) =

1

2πu0um
exp

{
−1

2

[(
η − y0
u0

)2

+

(
ηm − η
um

)2
]}

.

Letting v = (ηm − η)/um, dv = dηm/um and z = (η − y0)/u0, dz = dη/u0 and substituting into expressions (19)
and (20) yields, after simplification, the global consumer’s and producer’s risks:

RC =

∫ TL−y0
u0

−∞
F (z)ϕ0(z) dz +

∫ ∞
TU−y0

u0

F (z)ϕ0(z) dz (A.15)
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and

RP =

∫ TU−y0
u0

TL−y0
u0

(1− F (z))ϕ0(z) dz. (A.16)

In these expressions, ϕ0(z) = (1/
√

2π) exp (−z2/2) is the standard normal PDF and

F (z) = Φ

(
AU − y0 − u0z

um

)
− Φ

(
AL − y0 − u0z

um

)
, (A.17)

where Φ(t) is the standard normal distribution function.
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Annex B
(informative)

Prior knowledge of the measurand

B.1 Statistical process control

B.1.1 In many conformity assessments, knowledge of a measurand Y prior to making a measurement is not explicitly
considered in making accept/reject decisions. In such cases, which are typical of measurements analyzed according to
principles described in the GUM, there is an implicit assumption that prior knowledge of Y is so meagre as to have a
negligible effect on the outcome of the decision.

B.1.2 For a process in which a number of nominally identical items are produced over time, the nature of the
process can be studied by periodically measuring a sample of its output. Statistics generated in the course of such
measurements, such as a moving sample average and a sample standard deviation, provide information about the
stability of the process so that it can be adjusted as necessary to meet production quality criteria. The generation and
use of measurement information in this way forms the basis of statistical process control (SPC). A sizable literature
is available; see for example references [33, 43].

B.1.3 The behaviour of a process in SPC is commonly summarized by assuming that a sample of items measured
for quality control purposes comprises a set of realizations of a stable frequency distribution. The mean value µ and
standard deviation σ of this distribution are estimated from the sample statistics.

NOTE A process for which mean values and standard deviations show acceptable variation with respect to specified limits,
from sample to sample, is known as a stable process.

B.1.4 The prior PDF g
0
(η) for a measurand Y then takes the mathematical form of the frequency distribution

suggested by a histogram of measured quantity values. The property of interest for an item chosen at random from
the process would then be assigned a best estimate y0 = µ and associated standard uncertainty u0 = σ.

B.1.5 This typical SPC procedure has two principal shortcomings: (a) reliable process modelling by use of a
histogram usually requires a large sample, which might not be available, and (b) the uncertainty associated with the
sample measurements is ignored and plays no role in assigning the PDF g

0
(η). The following approach addresses both

of these problems and reduces to the SPC result in the appropriate limits.

B.2 An item chosen at random from a measured sample of items

B.2.1 Consider a sample of n items, each having a property Y of interest in a conformity assessment. The sample
is collected over an appropriate period of time from a production process that is assumed to be stable. Examples
include:

— a sample of n gauge blocks, each characterized by a length L;

— a sample of n digital voltmeters, each characterized by an error of indication E when measuring a standard
reference voltage;

— a sample of n fibre optic connectors, each characterized by an insertion loss Λ.

B.2.2 For each of the n items the property of interest is measured, yielding a set of estimates y1, . . . , yn and an
associated standard measurement uncertainty ũ. The uncertainty ũ depends on the procedure used to measure the
samples and is assumed to be the same for all of the measurements. The properties of the sample are then summarized
by calculating a sample mean y and sample variance s2 defined by

y =
1

n

n∑
k=1

yk, (B.1)
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and

s2 =
1

n

n∑
k=1

(yk − y)2. (B.2)

NOTE The sample variance is often defined by dividing the sum
∑n

k=1
(yk−y)2 by n−1 rather than n. The resulting quantity

can be shown to be an unbiased estimator of the variance σ2 of a frequency distribution from which the data samples are assumed
to be drawn. In defining s2 in expression (B.2), the goal is not to estimate an unknown variance but rather to characterise the
dispersion of the sample values about their mean. If the data are assumed to be a random sample from a normal frequency
distribution ϕ

(
η;µ, σ2

)
, then the sample variance (B.2) can be shown to be the maximum likelihood estimator of σ2 [10].

B.2.3 One of the measured items is selected at random (with probability 1/n) and taken to be representative of the
production process. Let Yr denote the property of interest for the randomly-selected item. Information relevant to the
possible values η of Yr consists only of the sample statistics (B.1) and (B.2), the individual estimates y1, . . . , yn being
discarded once the measurements have been performed. Summary properties of the PDF for Yr can be calculated as
follows.

B.2.4 Let fr(η) be the PDF for Yr and denote the PDFs for the n sample properties Y1, . . . , Yn by
fk(η), k = 1, . . . , n. Noting that each of the n items is equally likely to have been selected, fr(η) can be written
as the marginal PDF

fr(η) =
1

n

n∑
k=1

fk(η), (B.3)

called, appropriately, a finite mixture distribution [41].

B.2.5 The form of a particular PDF fk(η) is generally not known, but since it conveys knowledge of the property
Yk of the kth measured item,

E(Yk) = yk =

∫ ∞
−∞

ηfk(η) dη, (B.4)

and

V (Yk) = ũ2 =

∫ ∞
−∞

(η − yk)2fk(η) dη. (B.5)

Given these results and the PDF fr(η) of expression (B.3), the estimate yr of the property Yr and associated standard
uncertainty ur can then be calculated.

B.2.6 For the estimate yr we have, by definition

yr =

∫ ∞
−∞

ηfr(η) dη =
1

n

n∑
k=1

∫ ∞
−∞

ηfk(η) dη =
1

n

n∑
k=1

yk,

where expression (B.4) has been used in the last step. Comparing this result with expression (B.1) shows that the a
priori estimate of Y is equal to the sample mean:

yr = y. (B.6)

B.2.7 The associated variance of Y , whose positive square root is the standard uncertainty, is then given by

u2r =

∫ ∞
−∞

(η − y)2fr(η) dη =
1

n

n∑
k=1

∫ ∞
−∞

(η − y)2fk(η) dη. (B.7)
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Now writing

(η − y)2 = (η − yk + yk − y)2 = (η − yk)2 + (yk − y)2 + 2(η − yk)(yk − y),

using expressions (B.4) and (B.5), and substituting into expression (B.7) leads to the result

u2r = ũ2 +
1

n

n∑
k=1

(yk − y)2. (B.8)

B.2.8 The sum on the right-hand side of expression (B.8) is seen to be the sample variance s2 [see expression (B.2)]
so that

u2r = ũ2 + s2, (B.9)

and the standard uncertainty associated with the prior estimate y0 is

ur =
√
ũ2 + s2. (B.10)

B.2.9 The standard uncertainty ur given by expression (B.10) is seen to be a quadrature [or root-sum-square (RSS)]
combination of two components which are just the two parameters that summarize the sample data: a term ũ2 due
to the common standard uncertainty associated with the sample measurements, and a term s2 that characterizes the
variability of the estimates y1, . . . , yn.

NOTE Variability due to process variation and lack of measurement repeatability are combined in the observed sample variance
s2. The standard uncertainty ũ should include a component that captures the effect of measurement variation.

B.2.10 The calculated estimate and sample variance for the randomly selected item, expressions (B.6) and (B.7),
are then taken to characterize future production of the process, assumed to be stable and free of drift. The logical
model has a metrologist or inspector reasoning as follows:

“I have chosen a future item from the production process. What can I say about the property Y of this item
before it is measured? Based on the results of the sample measurements, I believe that the best estimate of Y
is y0 = yr, given by expression (B.6), with an associated variance u20 = u2r given by expression (B.9). This
is the extent of my knowledge. Given this information and the principle of maximum entropy (see JCGM
101:2008 6.3 and reference [45]), I will assign a normal PDF to convey and encode my prior knowledge of the
property Y for this item.”

B.2.11 This leads to the following normal (or Gaussian) distribution to encode prior knowledge of property Y :

g
0
(η) =

1

u0
√

2π
exp

[
−1

2

(
η − y0
u0

)2
]

= ϕ
(
η; y0, u

2
0

)
,

with y0 = y and u20 = ũ2 + s2.

B.2.12 In the common case where s2 � ũ2, uncertainty in the value of a property of an item chosen at random
from the production process is dominated by process variability. Then u0 ≈ σ ≈ s, where the process is modelled by
a frequency distribution with a standard deviation σ estimated by the sample standard deviation s.

B.3 A positive property near a physical limit

B.3.1 The normal PDF has an infinite range. In the case of a property (measurand) that is strictly positive, an
assigned normal PDF will distribute a fraction of its probability over negative (and thus impossible) values of the
property. For a property whose best estimate is within a few times its associated standard uncertainty of zero, this
fraction of the probability can be significant. In such a case, assigning a normal PDF would be an unreasonable way
to encode knowledge of the measurand.
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B.3.2 Many well-known PDFs are restricted to positive values of their arguments. Depending on available informa-
tion, such a PDF can serve to model knowledge of a measurand Y near a physical limit. In the case where knowledge
of Y ≥ 0 is limited to an estimate and associated variance, as in clause B.2, the principle of maximum entropy leads
to the assignment of a normal distribution that is truncated at zero [11]. If values of Y near zero are believed to have
negligible probability, assigning a prior PDF g

0
(η) that approaches zero as η → 0 might be appropriate. One such

distribution is the gamma PDF, whose use will serve as an example.

B.3.3 The gamma PDF, with positive parameters α and λ, is defined by

gamma (η;α, λ) =
λα

Γ(α)
ηα−1e−λη, η ≥ 0, (B.11)

where Γ(α) is the gamma function:

Γ(α) =

∫ ∞
0

xα−1e−x dx.

NOTE 1 Special cases of the gamma PDF include gamma (η; 1, λ) (an exponential PDF with parameter λ) and
gamma (η;n/2, 1/2) (a chi-squared PDF with n degrees of freedom).

NOTE 2 It is possible to define a 3-parameter gamma distribution by replacing η with (η−γ) in expression (B.11), where the
parameter γ becomes the left end-point and the distribution is restricted to the interval η ≥ γ.
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Figure B.1 – Several gamma (η;α, λ) PDFs, calculated according to expression (B.11), for selected
parameter pairs (α, λ).

B.3.4 Figure B.1 shows four gamma PDFs for particular values of α and λ. The expectation and variance of the
gamma PDF are given by

E(Y ) = y0 =
α

λ
, V (Y ) = u20 =

α

λ2
, (B.12)
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and the maximum value (mode) of the distribution occurs when

η =
α− 1

λ
. (B.13)

B.3.5 Given a particular state of prior information, appropriate values of α and λ can be estimated using these
expressions. In the case where knowledge of a property (measurand) Y is obtained by measuring a sample of produced
items, the prior estimate and associated variance are estimated by the sample statistics: y0 = y and u20 = s2.
Expressions (B.12) can then be solved for the gamma PDF parameters:

α =
y2

s2
, λ =

y

s2
. (B.14)

These estimates are the so-called ‘method of moments’ estimates, and may be unsatisfactory for a small sample size.
Alternatives are the maximum likelihood estimates, but these typically require some form of numerical optimization
or the solution of a system of non-linear equations.

B.3.6 An example using a gamma PDF in the calculation of consumer’s and producer’s risks is given in clause 9.5.4.

B.3.7 Useful information on properties and uses of probability distributions can be found in the books of Evans,
Hastings and Peacock [30] and Johnson, Kotz and Balakrishnan [28].
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Annex C
(informative)

Glossary of principal symbols

NOTE The term probability density function is abbreviated as PDF.

A interval of acceptable measured values Ym

Ã interval of non-acceptable measured values Ym

AL lower acceptance limit

AU upper acceptance limit

a lower limit of the interval in which a random variable is known to lie

b upper limit of the interval in which a random variable is known to lie

C interval of conforming values of a property of interest (measurand) Y

C̃ interval of non-conforming values of a property of interest (measurand) Y

Cm measurement capability index

E(X) expectation of a random variable X

E(Y |ηm) conditional expectation of a measurand Y, given a measured quantity value ηm

Emax maximum permissible error of indication for a measuring instrument

erf(z) error function with variable z

f(η, ηm) joint PDF with variables η and ηm for quantities Y and Ym

GX(ξ) distribution function with variable ξ for the quantity X

gamma(η;α, λ) gamma PDF with variable η and parameters α and λ

g (η|ηm) PDF with variable η for a measurand Y , given a measured quantity value ηm

g
0
(η) PDF with variable η for a measurand Y prior to measurement

g
0
(η|I) prior PDF with variable η for a measurand Y with explicit display of prior

information I; same as g
0
(η)

gX(ξ) PDF with variable ξ for the quantity X

h (ηm|η) PDF with variable ηm for the output quantity Ym of a measuring system, given
an assumed true value η of a measurand Y

h0(ηm) marginal PDF with variable ηm for the output quantity Ym of a measuring
system

k coverage factor

L (η; ηm) likelihood of a true value η given a measured quantity value ηm

p coverage probability

pc conformance probability

pc probability of non-conformance

RC global consumer’s risk

R∗C specific consumer’s risk

RP global producer’s risk

R∗P specific producer’s risk
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s2 sample variance

T tolerance

TL lower tolerance limit

TU upper tolerance limit

U expanded uncertainty

u standard uncertainty

u0 standard uncertainty associated with estimate y0 of a measurand Y before
performing a measurement

um standard uncertainty associated with a measured quantity value ηm when prior
knowledge of the measurand is negligible

V (X) variance of a random variable X

V (Y |ηm) conditional variance of a measurand Y, given a measured quantity value ηm

w length parameter of a guard band

Y measurable property (measurand) of an item, taken to be a random variable

Ym output of a measuring system, taken to be a random variable

ȳ sample mean

y0 expectation of Y before performing a measurement

ỹ scaled measured quantity value

α parameter of a gamma PDF

Γ(z) gamma function with variable z

η variable describing possible values of a measurand Y

λ parameter of a gamma PDF

Φ(z) standard normal distribution function with variable z

ϕ0(z) standard normal PDF with variable z

ϕ
(
η; y, u2

)
normal (Gaussian) PDF with variable η, expectation y and variance u2
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