

CERTIFICATE OF ACCREDITATION

This is to attest that

CHINA HARBOUR ENGINEERING COMPANY LTD.

CHAITHYA ROAD, COLOMBO PORT COLOMBO, SRI LANKA

Testing Laboratory TL-767

has met the requirements of AC89, *IAS Accreditation Criteria for Testing Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date February 5, 2024

President

SCOPE OF ACCREDITATION

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

CHINA HARBOUR ENGINEERING COMPANY LTD.

Contact Name Tang Mingju

Contact Phone +94 076 393 1769

Accredited to ISO/IEC 17025:2017

Effective Date February 5, 2024

СМТ	
AASHTO T 89	Standard Method of Test for Determining the Liquid Limit of Soils
AASHTO T 90	Standard Method of Test for Determining the Plastic Limit and Plasticity Index of Soils
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test
AASHTO T 180	Moisture–Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop
AASHTO T 193	Standard Test Method for The California Bearing Ratio (CBR)
AASHTO T 245	Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus
ASTM C535	Standard Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
ASTM D1883	Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils
ASTM D2726	Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Asphalt Mixtures
BS 812-2	Testing aggregates. Methods for determination of density (Clauses 5.3 & 5.5 only)
BS 812-105.1	Testing aggregates - Part 105: Methods for determination of particle shape- Section 105.1 Flakiness index
BS 812-105.2	Testing aggregates - Part 105: Methods for determination of particle shape- Section 105.2 Elongation index of coarse aggregate
BS 812-106	Testing aggregates - Part 106: Method for determination of shell content in coarse aggregate
BS 812-110	Testing aggregates - Part 110: Methods for determination of aggregate crushing value (ACV)
BS 1377-2	Soils for Civil Engineering Purposes-Part 2; Clause 4.5, Casagrande apparatus method
BS 1377-2	Soils for Civil Engineering Purposes-Part 2, Clause 5, Determination of the Plastic Limit and Plastic Index
BS 1377-4	Soils for Civil Engineering Purposes-Part 4, Clause 3, Determination of Dry Density/Moisture content relationship

SCOPE OF ACCREDITATION

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

BS 1377-4	Soils for Civil Engineering Purpose, Part 4, Clause 4, Determination of maximum and minimum dry densities for granular soils
BS 1377-4	Soils for Civil Engineering Purposes-Part 4: Clause 7, Determination of the California Bearing Ratio (CBR).
BS 1377-9	Methods of test for Soils for civil Engineering purposes —Part 9: (In-situ tests Clause 2.2 only)
BS 1377-9	Soils for Civil Engineering Purposes-Part 9, Clause 4.3, Determination of the In-Situ CBR.
BS 6717-Part 1	Precast concrete paving blocks-Part 1: Specification for paving blocks
BS EN 812-112	Aggregate Impact Value (AIV)
BS EN 933-1	Tests for geometrical properties of aggregates Part 1: Determination of Particle size distribution — Sieving method
BS EN 933-8	Tests for geometrical properties of aggregates Part 8: Assessment of fines – Sand equivalent test
BS EN 12350-2	Testing fresh concrete - Part 2: Slump-test
BS EN 12390-3	Testing hardened concrete: Part 3: Compressive strength of test Specimens
BS EN 13383-2	Armourstone Part 2, Test method (Clauses 5, 6 and 7 only)
Ciria publication C683	Drop test (Clause 3.8.5.2 only)
ISRM 1985	RTH 325- Determining Point load

